Documentation

Mathlib.Order.Category.FinPartOrd

The category of finite partial orders #

This defines FinPartOrd, the category of finite partial orders.

Note: FinPartOrd is not a subcategory of BddOrd because finite orders are not necessarily bounded.

TODO #

FinPartOrd is equivalent to a small category.

structure FinPartOrdextends PartOrd :
Type (u_1 + 1)

The category of finite partial orders with monotone functions.

Instances For
    @[reducible, inline]
    abbrev FinPartOrd.of (α : Type u_1) [PartialOrder α] [Fintype α] :

    Construct a bundled FinPartOrd from PartialOrder + Fintype.

    Equations
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      @[reducible, inline]
      abbrev FinPartOrd.ofHom {X Y : Type u} [PartialOrder X] [Fintype X] [PartialOrder Y] [Fintype Y] (f : X →o Y) :
      of X of Y

      Typecheck a OrderHom as a morphism in FinPartOrd.

      Equations
      Instances For

        Use the ConcreteCategory.hom projection for @[simps] lemmas.

        Equations
        Instances For
          theorem FinPartOrd.hom_ext {X Y : FinPartOrd} {f g : X Y} (hf : PartOrd.Hom.hom f = PartOrd.Hom.hom g) :
          f = g
          @[simp]
          theorem FinPartOrd.hom_ofHom {X Y : Type u} [PartialOrder X] [Fintype X] [PartialOrder Y] [Fintype Y] (f : X →o Y) :
          @[simp]
          theorem FinPartOrd.ofHom_hom {X Y : FinPartOrd} (f : X Y) :
          def FinPartOrd.Iso.mk {α β : FinPartOrd} (e : α.toPartOrd ≃o β.toPartOrd) :
          α β

          Constructs an isomorphism of finite partial orders from an order isomorphism between them.

          Equations
          Instances For
            @[simp]
            theorem FinPartOrd.Iso.mk_hom {α β : FinPartOrd} (e : α.toPartOrd ≃o β.toPartOrd) :
            (mk e).hom = ofHom e
            @[simp]
            theorem FinPartOrd.Iso.mk_inv {α β : FinPartOrd} (e : α.toPartOrd ≃o β.toPartOrd) :
            (mk e).inv = ofHom e.symm

            OrderDual as a functor.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem FinPartOrd.dual_map {X✝ Y✝ : FinPartOrd} (f : X✝ Y✝) :

              The equivalence between FinPartOrd and itself induced by OrderDual both ways.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For