Vandermonde matrix #
This file defines the vandermonde matrix and gives its determinant.
Main definitions #
vandermonde v: a square matrix with thei, jth entry equal tov i ^ j.
Main results #
det_vandermonde:det (vandermonde v)is the product ofv i - v j, where(i, j)ranges over the unordered pairs.
vandermonde v is the square matrix with ith row equal to 1, v i, v i ^ 2, v i ^ 3, ....
Equations
- Matrix.vandermonde v = Matrix.of fun (i j : Fin n) => v i ^ ↑j
Instances For
@[simp]
@[simp]
theorem
Matrix.eval_matrixOfPolynomials_eq_vandermonde_mul_matrixOfPolynomials
{R : Type u_1}
[CommRing R]
{n : ℕ}
(v : Fin n → R)
(p : Fin n → Polynomial R)
(h_deg : ∀ (i : Fin n), (p i).natDegree ≤ ↑i)
:
(of fun (i j : Fin n) => Polynomial.eval (v i) (p j)) = vandermonde v * of fun (i j : Fin n) => (p j).coeff ↑i