The structure of Fintype (Fin n) #
This file contains some basic results about the Fintype instance for Fin,
especially properties of Finset.univ : Finset (Fin n).
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Fin.card_filter_univ_succ
{n : ℕ}
(p : Fin (n + 1) → Prop)
[DecidablePred p]
 :
(Finset.filter (fun (x : Fin (n + 1)) => p x) Finset.univ).card =   if p 0 then (Finset.filter (fun (x : Fin n) => p x.succ) Finset.univ).card + 1
  else (Finset.filter (fun (x : Fin n) => p x.succ) Finset.univ).card
theorem
Fin.card_filter_univ_succ'
{n : ℕ}
(p : Fin (n + 1) → Prop)
[DecidablePred p]
 :
(Finset.filter (fun (x : Fin (n + 1)) => p x) Finset.univ).card =   (if p 0 then 1 else 0) + (Finset.filter (fun (x : Fin n) => p x.succ) Finset.univ).card
theorem
Fin.card_filter_univ_eq_vector_get_eq_count
{α : Type u_1}
{n : ℕ}
[DecidableEq α]
(a : α)
(v : List.Vector α n)
 :