structure
SubField
(K A : Type u)
[CommSemiring K]
[Semiring A]
[Algebra K A]
extends Subalgebra K A :
Type u
Instances For
Equations
- instLESubField K A = { le := fun (L1 L2 : SubField K A) => L1.toSubalgebra ≤ L2.toSubalgebra }
noncomputable def
IsMaximalSubfield
(K A : Type u)
[CommSemiring K]
[Semiring A]
[Algebra K A]
(L : SubField K A)
:
Equations
- IsMaximalSubfield K A L = ∀ (B : SubField K A), L ≤ B → B = L
Instances For
instance
instNonemptySubFieldOfNontrivial
(K A : Type u)
[Field K]
[Ring A]
[Algebra K A]
[Nontrivial A]
:
noncomputable instance
instPartialOrderSubField
(K A : Type u)
[Field K]
[Ring A]
[Algebra K A]
:
PartialOrder (SubField K A)
Equations
Equations
- instSetLikeSubField K A = { coe := fun (L : SubField K A) => ↑L.toSubalgebra, coe_injective' := ⋯ }
instance
instSubringClassSubField
(K A : Type u)
[Field K]
[Ring A]
[Algebra K A]
:
SubringClass (SubField K A) A
Equations
- SubField.toSubalgebra' K A = { toFun := fun (S : SubField K A) => { toSubsemiring := S.toSubsemiring, algebraMap_mem' := ⋯ }, inj' := ⋯, map_rel_iff' := ⋯ }
Instances For
noncomputable instance
SubField.instFieldSubtypeMemSubalgebraOfNontrivial
(K A : Type u)
[Field K]
[Ring A]
[Nontrivial A]
[Algebra K A]
(L : SubField K A)
:
noncomputable instance
SubField.instFieldSubtypeMemOfNontrivial
(K A : Type u)
[Field K]
[Ring A]
[Nontrivial A]
[Algebra K A]
(L : SubField K A)
:
Field ↥L
Equations
instance
SubField.instFiniteDimensionalSubtypeMem
(K A : Type u)
[Field K]
[Ring A]
[Algebra K A]
[FiniteDimensional K A]
(L : SubField K A)
:
FiniteDimensional K ↥L
noncomputable instance
SubField.instPreorderOfNontrivial
(K A : Type u)
[Field K]
[Ring A]
[Nontrivial A]
[Algebra K A]
:
Equations
- SubField.instPreorderOfNontrivial K A = Preorder.mk ⋯ ⋯ ⋯