Relative Brauer Group #
Main results #
BrauerGroup.split_iff: LetAbe a CSA over F, then⟦A⟧ ∈ Br(K/F)if and only if K splits AisSplit_iff_dimension: LetAbe a CSA over F, then⟦A⟧ ∈ Br(K/F)if and only if there exists anotherF-CSABsuch that⟦A⟧ = ⟦B⟧(i.e.AandBare Brauer-equivalent) andK ⊆ Banddim_F B = (dim_F K)²
@[reducible, inline]
The relative Brauer group Br(K/F) is the kernel of the map Br F -> Br K
Equations
Instances For
theorem
IsBrauerEquivalent.exists_common_division_algebra
(K : Type u)
[Field K]
(A B : CSA K)
(h : IsBrauerEquivalent A B)
: