Documentation

BrauerGroup.MoritaEquivalence

instance instModuleMatrixForall_brauerGroup (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [DecidableEq ι] (M : Type u_1) [AddCommGroup M] [Module R M] :
Module (Matrix ι ι R) (ιM)
Equations
theorem matrix_smul_vec_def (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [DecidableEq ι] {M : Type u_1} [AddCommGroup M] [Module R M] (N : Matrix ι ι R) (v : ιM) :
N v = fun (i : ι) => j : ι, N i j v j
theorem matrix_smul_vec_def' (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [DecidableEq ι] {M : Type u_1} [AddCommGroup M] [Module R M] (N : Matrix ι ι R) (v : ιM) :
N v = j : ι, fun (i : ι) => N i j v j
theorem matrix_smul_vec_apply (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [DecidableEq ι] {M : Type u_1} [AddCommGroup M] [Module R M] (N : Matrix ι ι R) (v : ιM) (i : ι) :
(N v) i = j : ι, N i j v j
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem toModuleCatOverMatrix_obj_carrier (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [DecidableEq ι] (M : ModuleCat R) :
    ((toModuleCatOverMatrix R ι).obj M) = (ιM)
    @[simp]
    theorem toModuleCatOverMatrix_map (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [DecidableEq ι] {X✝ Y✝ : ModuleCat R} (f : X✝ Y✝) :
    (toModuleCatOverMatrix R ι).map f = ModuleCat.ofHom { toFun := fun (v : ιX✝) (i : ι) => (CategoryTheory.ConcreteCategory.hom f) (v i), map_add' := , map_smul' := }
    def fromModuleCatOverMatrix.α (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [DecidableEq ι] [Inhabited ι] (M : Type u_1) [AddCommGroup M] [Module (Matrix ι ι R) M] :
    Equations
    Instances For
      @[simp]
      theorem fromModuleCatOverMatrix.coe_α (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [DecidableEq ι] [Inhabited ι] (M : Type u_1) [AddCommGroup M] [Module (Matrix ι ι R) M] :
      (α R ι M) = Set.range fun (x : M) => Matrix.stdBasisMatrix default default 1 x
      instance fromModuleCatOverMatrix.module_α (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [Inhabited ι] [DecidableEq ι] (M : Type u_1) [AddCommGroup M] [Module (Matrix ι ι R) M] :
      Module R (α R ι M)
      Equations
      @[simp]
      theorem fromModuleCatOverMatrix.smul_α_coe (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [Inhabited ι] [DecidableEq ι] {M : Type u_1} [AddCommGroup M] [Module (Matrix ι ι R) M] (x : R) (y : (α R ι M)) :
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem fromModuleCatOverMatrix_map (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [Inhabited ι] [DecidableEq ι] {X✝ Y✝ : ModuleCat (Matrix ι ι R)} (f : X✝ Y✝) :
        (fromModuleCatOverMatrix R ι).map f = ModuleCat.ofHom { toFun := fun (x : (fromModuleCatOverMatrix.α R ι X✝)) => (CategoryTheory.ConcreteCategory.hom f) x, , map_add' := , map_smul' := }
        @[simp]
        theorem fromModuleCatOverMatrix_obj_carrier (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [Inhabited ι] [DecidableEq ι] (M : ModuleCat (Matrix ι ι R)) :
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem matrix.unitIsoHom_app (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [Inhabited ι] [DecidableEq ι] (X : ModuleCat R) :
          (unitIsoHom R ι).app X = ModuleCat.ofHom { toFun := fun (x : (fromModuleCatOverMatrix.α R ι ((toModuleCatOverMatrix R ι).obj X))) => i : ι, x i, map_add' := , map_smul' := }
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem matrix.unitIsoInv_app (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [Inhabited ι] [DecidableEq ι] (X : ModuleCat R) :
            (unitIsoInv R ι).app X = ModuleCat.ofHom { toFun := fun (x : X) => Function.update 0 default x, , map_add' := , map_smul' := }
            Equations
            Instances For
              @[simp]
              theorem matrix.unitIso_inv (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [Inhabited ι] [DecidableEq ι] :
              (unitIso R ι).inv = unitIsoInv R ι
              @[simp]
              theorem matrix.unitIso_hom (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [Inhabited ι] [DecidableEq ι] :
              (unitIso R ι).hom = unitIsoHom R ι
              noncomputable def matrix.counitIsoHomMap (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [Inhabited ι] [DecidableEq ι] (M : ModuleCat (Matrix ι ι R)) :
              Equations
              Instances For
                @[simp]
                theorem matrix.counitIsoHomMap_hom_hom_apply_coe (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [Inhabited ι] [DecidableEq ι] (M : ModuleCat (Matrix ι ι R)) (a✝ : M) (a✝¹ : ι) :
                ((ModuleCat.Hom.hom (counitIsoHomMap R ι M).hom) a✝ a✝¹) = Matrix.stdBasisMatrix default a✝¹ 1 a✝
                @[simp]
                theorem matrix.counitIsoHomMap_inv_hom_apply (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [Inhabited ι] [DecidableEq ι] (M : ModuleCat (Matrix ι ι R)) (a : ι((fromModuleCatOverMatrix R ι).obj M)) :
                (ModuleCat.Hom.hom (counitIsoHomMap R ι M).inv) a = ((↑(LinearEquiv.ofBijective { toFun := fun (m : M) (i : ι) => Matrix.stdBasisMatrix default i 1 m, , map_add' := , map_smul' := } )).inverse (LinearEquiv.ofBijective { toFun := fun (m : M) (i : ι) => Matrix.stdBasisMatrix default i 1 m, , map_add' := , map_smul' := } ).symm ) a
                Equations
                Instances For
                  @[simp]
                  theorem matrix.counitIsoHom_app (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [Inhabited ι] [DecidableEq ι] (M : ModuleCat (Matrix ι ι R)) :
                  Equations
                  Instances For
                    @[simp]
                    theorem matrix.counitIsoInv_app (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [Inhabited ι] [DecidableEq ι] (M : ModuleCat (Matrix ι ι R)) :
                    Equations
                    Instances For
                      @[simp]
                      theorem matrix.counitIso_inv (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [Inhabited ι] [DecidableEq ι] :
                      @[simp]
                      theorem matrix.counitIso_hom (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [Inhabited ι] [DecidableEq ι] :
                      noncomputable def moritaEquivalentToMatrix (R : Type u) [Ring R] (ι : Type w) [Fintype ι] [Inhabited ι] [DecidableEq ι] :
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        class IsMoritaEquivalent (R : Type u) (S : Type u') [Ring R] [Ring S] :
                        Instances
                          noncomputable def IsMoritaEquivalent.equiv (R : Type u) (S : Type u') [Ring R] [Ring S] [IsMoritaEquivalent R S] :
                          Equations
                          Instances For
                            theorem IsMoritaEquivalent.trans (R : Type u) (S : Type u') (T : Type u'') [Ring R] [Ring S] [Ring T] [IsMoritaEquivalent R S] [IsMoritaEquivalent S T] :
                            instance IsMoritaEquivalent.matrix (R : Type u) [Ring R] (n : ) :
                            IsMoritaEquivalent R (Matrix (Fin (n + 1)) (Fin (n + 1)) R)
                            theorem IsMoritaEquivalent.matrix' (R : Type u) [Ring R] (n : ) [hn : NeZero n] :
                            @[reducible, inline]
                            Equations
                            Instances For
                              @[reducible, inline]
                              Equations
                              Instances For
                                theorem IsMoritaEquivalent.ofIso (R : Type u) (S : Type u') [Ring R] [Ring S] (e : R ≃+* S) :
                                instance CategoryTheory.Equivalence.nontrivial {R S : Type u} [Ring R] [Ring S] (e : ModuleCat R ModuleCat S) (M : ModuleCat R) [h : Nontrivial M] :
                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  @[simp]
                                  theorem IsMoritaEquivalent.division_ring.mopToEnd_apply (R : Type u) [DivisionRing R] (a : Rᵐᵒᵖ) :
                                  (mopToEnd R) a = ModuleCat.ofHom { toFun := fun (x : R) => x * MulOpposite.unop a, map_add' := , map_smul' := }
                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For