Properties of centers and centralizers #
This file contains theorems about the center and centralizer of a subalgebra.
Main results #
Let R be a commutative ring and A and B two R-algebras.
Subalgebra.centralizer_sup: ifSandTare subalgebras ofA, then the centralizer ofS ⊔ Tis the intersection of the centralizer ofSand the centralizer ofT.Subalgebra.centralizer_range_includeLeft_eq_center_tensorProduct: ifBis free as a module, then the centralizer ofAinA ⊗ BisC(A) ⊗ BwhereC(A)is the center ofA.Subalgebra.centralizer_range_includeRight_eq_center_tensorProduct: ifAis free as a module, then the centralizer ofBinA ⊗ BisA ⊗ C(B)whereC(B)is the center ofB.
theorem
Subalgebra.centralizer_sup
{R : Type u_1}
[CommSemiring R]
{A : Type u_2}
[Semiring A]
[Algebra R A]
(S T : Subalgebra R A)
:
theorem
Subalgebra.centralizer_range_includeLeft_eq_center_tensorProduct
(R : Type u_1)
[CommSemiring R]
(A : Type u_2)
[Semiring A]
[Algebra R A]
(B : Type u_3)
[Semiring B]
[Algebra R B]
[Module.Free R B]
:
centralizer R ↑Algebra.TensorProduct.includeLeft.range = (Algebra.TensorProduct.map (center R A).val (AlgHom.id R B)).range
Let R be a commutative ring and A, B be R-algebras where B is free as R-module.
Then the centralizer of A ⊆ A ⊗ B is C(A) ⊗ B where C(A) is the center of A.
theorem
Subalgebra.centralizer_range_includeRight_eq_center_tensorProduct
(R : Type u_1)
[CommSemiring R]
(A : Type u_2)
[Semiring A]
[Algebra R A]
(B : Type u_3)
[Semiring B]
[Algebra R B]
[Module.Free R A]
:
centralizer R ↑Algebra.TensorProduct.includeRight.range = (Algebra.TensorProduct.map (AlgHom.id R A) (center R B).val).range
Let R be a commutative ring and A, B be R-algebras where A is free as R-module.
Then the centralizer of B ⊆ A ⊗ B is A ⊗ C(B) where C(B) is the center of B.
theorem
Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_left
(R : Type u_1)
[CommSemiring R]
(A : Type u_2)
[Semiring A]
[Algebra R A]
(B : Type u_3)
[Semiring B]
[Algebra R B]
[Module.Free R B]
:
centralizer R ↑(Algebra.TensorProduct.map (AlgHom.id R A) (Algebra.ofId R B)).range = (Algebra.TensorProduct.map (center R A).val (AlgHom.id R B)).range
theorem
Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_right
(R : Type u_1)
[CommSemiring R]
(A : Type u_2)
[Semiring A]
[Algebra R A]
(B : Type u_3)
[Semiring B]
[Algebra R B]
[Module.Free R A]
:
centralizer R ↑(Algebra.TensorProduct.map (Algebra.ofId R A) (AlgHom.id R B)).range = (Algebra.TensorProduct.map (AlgHom.id R A) (center R B).val).range