• 1 Central Simple Algebras ▶
    • 1.1 Basic Theory
    • 1.2 Subfields of Central Simple Algebras
  • 2 Morita Equivalence ▶
    • 2.1 Construction of the equivalence
    • 2.2 Stacks 074E
  • 3 Results in Noncommutative Algebra ▶
    • 3.1 A Collection of Useful Lemmas ▶
      • 3.1.1 Tensor Product
      • 3.1.2 Centralizer and Center
      • 3.1.3 Some Isomorphisms
    • 3.2 Wedderburn-Artin Theorem for Simple Rings ▶
      • 3.2.1 Classification of Simple Rings
      • 3.2.2 Uniqueness of the Classification
    • 3.3 Skolem-Noether Theorem
    • 3.4 Double Centralizer Theorem
  • 4 Brauer Group ▶
    • 4.1 Construction of Brauer Group
    • 4.2 Base Change
    • 4.3 Good Representative Lemma ▶
      • 4.3.1 Basic Properties
      • 4.3.2 Conjugation Factors and Conjugation Sequences
    • 4.4 The Second Galois Cohomology ▶
      • 4.4.1 From \(\operatorname{Br}(K/F)\) to \(\operatorname{H}^{2}\left(\operatorname{Gal}(K/F),K^{\star }\right)\)
      • 4.4.2 Cross Product as a Central Simple Algebra
      • 4.4.3 From \(\operatorname{H}^{2}\left(\operatorname{Gal}(K/F), K^{\star }\right)\) to \(\operatorname{Br}(K/F)\)
      • 4.4.4 \(\operatorname{H}^{2} \circ \operatorname{\mathfrak {C}}\) and \(\operatorname{\mathfrak {C}}\circ \operatorname{H}^{2}\)
      • 4.4.5 Group Homomorphism
  • Dependency graph

Brauer Group and Galois Cohomology

Jujian Zhang Yunzhou Xie

  • 1 Central Simple Algebras
    • 1.1 Basic Theory
    • 1.2 Subfields of Central Simple Algebras
  • 2 Morita Equivalence
    • 2.1 Construction of the equivalence
    • 2.2 Stacks 074E
  • 3 Results in Noncommutative Algebra
    • 3.1 A Collection of Useful Lemmas
      • 3.1.1 Tensor Product
      • 3.1.2 Centralizer and Center
      • 3.1.3 Some Isomorphisms
    • 3.2 Wedderburn-Artin Theorem for Simple Rings
      • 3.2.1 Classification of Simple Rings
      • 3.2.2 Uniqueness of the Classification
    • 3.3 Skolem-Noether Theorem
    • 3.4 Double Centralizer Theorem
  • 4 Brauer Group
    • 4.1 Construction of Brauer Group
    • 4.2 Base Change
    • 4.3 Good Representative Lemma
      • 4.3.1 Basic Properties
      • 4.3.2 Conjugation Factors and Conjugation Sequences
    • 4.4 The Second Galois Cohomology
      • 4.4.1 From \(\operatorname{Br}(K/F)\) to \(\operatorname{H}^{2}\left(\operatorname{Gal}(K/F),K^{\star }\right)\)
      • 4.4.2 Cross Product as a Central Simple Algebra
      • 4.4.3 From \(\operatorname{H}^{2}\left(\operatorname{Gal}(K/F), K^{\star }\right)\) to \(\operatorname{Br}(K/F)\)
      • 4.4.4 \(\operatorname{H}^{2} \circ \operatorname{\mathfrak {C}}\) and \(\operatorname{\mathfrak {C}}\circ \operatorname{H}^{2}\)
      • 4.4.5 Group Homomorphism