Brauer Group and Galois Cohomology

Jujian Zhang

Yunzhou Xie

January 22, 2025

Contents

	Pref	ace	2
1	Cent 1.1 1.2	tral Simple Algebras Basic Theory	$3 \\ 5$
2	Mor	ita Equivalence	7
	$2.1 \\ 2.2$	Construction of the equivalence ' Stacks 074E	7 8
3	Resi	ults in Noncommutative Algebra 10 A G-lb-stien of Useful Lemma 11	0
	3.1	A Collection of Userul Lemmas	0
		3.1.2 Centralizer and Center	1
		3.1.3 Some Isomorphisms	1
	3.2	Wedderburn-Artin Theorem for Simple Rings 12	2
		3.2.1 Classification of Simple Rings	2
		3.2.2 Uniqueness of the Classification	3
	3.3	Skolem-Noether Theorem 14	4
	3.4	Double Centralizer Theorem 1	5
4	Brau	uer Group 1'	7
	4.1	Construction of Brauer Group	7
	4.2	Base Change 18	8
	4.3	Good Representative Lemma 20	0
		4.3.1 Basic Properties	2
		4.3.2 Conjugation Factors and Conjugation Sequences	3
	4.4	The Second Galois Cohomology	4
		4.4.1 From $Br(K/F)$ to $H^2(Gal(K/F), K^*)$	5
		4.4.2 Cross Product as a Central Simple Algebra 28	8
		Central Algebra 32	2
		Simple Ring	3
		4.4.3 From H ² (Gal(K/F), K [*]) to Br(K/F)	5
		4.4.4 $H^2 \circ \mathfrak{C}$ and $\mathfrak{C} \circ H^2$	6
		4.4.5 Group Homomorphism $\ldots 33$	8
		$\mathfrak{C}_1 = 1 \text{ and } \mathrm{H}^2(1) = 1 \dots \dots$	8

Preface

In this exposition, we describe a excruciatingly detailed proof of the following theorem:

Theorem. For a finite dimensional and Galois field extension K/F, the relative Brauer group Br(K/F) is isomorphic to the second group cohomology $H^2(Gal(K/F), K^*)$.

The reason for the detailed-ness is because we are aiming to formalise the proof described in the following chapters; therefore the more details, the better. We apologise for the unconventional organisation in advance — earlier chapters sometimes use results from later chapter. For our defence, we try to categorise all the results by topics and, since this is a formalisation project, we can guarantee the readers that there is no circular reasoning.

Chapter 1

Central Simple Algebras

1.1 Basic Theory

In this chapter we define central simple algebras. We used some results in section 3.1.

Definition 1.1.1 (Simple Ring). A ring R is simple if the only two-sided-ideals of R are 0 and R. An algebra is simple if it is simple as a ring.

Remark 1.1.1. Division rings are simple.

Lemma 1.1.2. Let A be a simple ring, then centre of A is a field.

Proof. Let $0 \neq x$ be an element of centre of A. Then $I := \{xy | y \in A\}$ is a two-sided-ideal of A. Since $0 \neq x \in I$, we have that I = A. Therefore $1 \in I$, hence x is invertible.

Definition 1.1.2 (Central Algebras). Let R be a ring and A an $R\-$ algebra, we say A is central if and only if the centre of A is R

Remark 1.1.3. Every commutative ring is a central algebra over itself.

Remark 1.1.4. Simpleness is invariant under ring isomorphism and centrality is invariant under algebra isomorphism.

Lemma 1.1.5. If A is a central R-algerba, A^{opp} is also central. .

Lemma 1.1.6. R is a simple ring if and only if any ring homomorphism $f : R \to S$ either injective or S is the trivial ring.

Proof. If R is simple, then the ker f is either $\{0\}$ or R. The former case implies that f is injective while the latter case implies that S is the trivial ring. Conversely, let $I \subseteq R$ be a two-sided-ideal. Consider $\pi : R \to {}^{R}/_{I}$, either π is injective implying that $I = \{0\}$ or that ${}^{R}/_{I}$ is the trivial ring implying that I = R.

Remark 1.1.7. If A is a simple R-algebra, "ring homomorphism" in lemma 1.1.6 can be replaced with R-algebra homomorphism.

Corollary 1.1.8. Assume R is a field. Let A, B be finite dimensional R-algebras where A is simple as well. Then any R-algebra homomorphism $f : A \to B$ is bijective if $\dim_R A = \dim_R B$.

Proof. By lemma 1.1.6, fis injective. Then $\dim_K \operatorname{im} f = \dim_K B - \dim_K \ker f = \dim_K B$ meaning that f is surjective.

Let K be a field and A, B be K-algebras.

Lemma 1.1.9. If A and B are central K-algebras, $A \otimes_K B$ is a central K-algebra as well.

Proof. Assume A and B are central algebras, then by corollary 3.1.7 $Z(A \otimes_R B) = Z(A) \otimes_R Z(B) = R \otimes_R R = R$.

Theorem 1.1.10. If A is a simple K-algebra and B is a central simple K-algebra, $A \otimes_{K} B$ is a central simple K-algebra as well.

Proof. By lemma 1.1.9, we need to prove $A \otimes_K B$ is a simple ring. Denote f as the map $A \to A \otimes_K B$. It is sufficient to prove that for every two-sided-ideal $I \subseteq A \otimes_K B$, we have $I = \langle f(f^{-1}(I)) \rangle$. Indeed, since A is simple $f^{-1}(I)$ is either {0} or A, if it is {0}, then $I = \{0\}$; if it is A, then I is A as well.

We will prove that $I \leq \langle f(f^{-1}(I)) \rangle$, the other direction is straightforward. Without loss of generality assume $I \neq \{0\}$. Let \mathcal{A} be an arbitrary basis of A, by lemma 3.1.1, we see that every element $x \in A \otimes_{\mathsf{K}} B$ can be written as $\sum_{i=0}^{n} \mathcal{A}_i \otimes b_i$ for some natrual number \mathfrak{n} and some choice of $b_i \in B$ and $\mathcal{A}_i \in \mathcal{A}$. Since I is not empty, we see there exists a non-zero element $\omega \in I$ such that its expansion $\sum_{i=0}^{n} \mathcal{A}_i \otimes b_i$ has the minimal \mathfrak{n} . In particular, all b_i are non-zero and $\mathfrak{n} \neq 0$. We have $\omega = \mathcal{A}_0 \otimes \mathfrak{b}_0 + \sum_{i=1}^{n} \mathcal{A}_i \otimes \mathfrak{b}_i$. Since B is simple, $1 \in B = \langle \langle \mathfrak{b}_0 \rangle$; hence we write $1 \in \sum_{j=0}^{m} x_i \mathfrak{b}_0 y_i$ for some $x_i, y_i \in B$. Define $\Omega := \sum_{j=0}^{m} (1 \otimes x_i) \omega (1 \otimes y_i)$ which is also in I. We write

$$\begin{split} \Omega &= \mathcal{A}_0 \otimes \left(\sum_{j=0}^m x_j b_0 y_j \right) + \sum_{i=1}^n \mathcal{A}_i \otimes \left(\sum_{j=0}^m x_j b_i y_j \right) \\ &= \mathcal{A}_0 \otimes 1 + \sum_{i=1}^n \mathcal{A}_i \otimes \left(\sum_{j=0}^m x_j b_i y_j \right) \end{split}$$

For every $\beta \in B$, we have that $(1 \otimes \beta) \Omega - \Omega (1 \otimes \beta)$ is in I and is equal to

$$\sum_{i=1}^n \mathcal{A}_i \otimes \left(\sum_{j=0}^m \beta x_j b_i y_j - x_j b_i y_j \beta \right),$$

which is an expansion of n-1 terms, thus $(1 \otimes \beta) \Omega - \Omega (1 \otimes \beta)$ must be 0. Hence we conclude that for all i = 1, ..., n, $\sum_{j=0}^{m} x_j b_i y_j \in Z(B) = K$. Hence for all i = 1, ..., n, we find a $\kappa_i \in K$ such that $\kappa_i = \sum_{j=0}^{m} x_j b_i y_j$. Hence we can calculate Ω as

$$\begin{split} \Omega &= \mathcal{A}_0 \otimes 1 + \sum_{i=1}^n \mathcal{A}_i \otimes \left(\sum_{j=0}^m \right) \\ &= \mathcal{A}_0 \otimes 1 + \sum_{i=1}^n \mathcal{A}_i \otimes \kappa_i \\ &= \left(\mathcal{A}_0 + \sum_{i=1}^n \kappa_i \cdot \mathcal{A}_i \right) \otimes 1 \end{split}$$

From this, we note that $\mathcal{A}_0 + \sum_i^n \kappa_i \cdot \mathcal{A}_i \in f^{-1}(I)$; since A is simple, we immediately conclude that $f^{-1}(I) = A$, once we know $\mathcal{A}_0 + \sum_{i=1}^n \kappa_i \cdot \mathcal{A}_i$ is not zero. If it is zero, by the fact that \mathcal{A} is a linearly independent set, we conclude that $1, \kappa_1, \ldots, \kappa_n$ are all zero; which is a contradiction. Since $f^{-1}(I) = A$, we know $\langle f(f^{-1}I) \rangle = A \otimes_K B$.

Corollary 1.1.11. Central simple algebras are stable under base change. That is, if L/K is a field extension and D is a central simple algebra over K, then $L \otimes_K D$ is central simple over L.

Proof. By theorem 1.1.10, $L \otimes_K D$ is simple. Let $x \in Z(L \otimes_K D)$, by corollary 3.1.7, we have $x \in Z(L) \otimes Z(D) = Z(L)$. Without loss of generality, we can assume that $x = l \otimes d$ is a pure tensor, then $l \in Z(L)$ and $d \in K$. Therefore $x = d \cdot l \in L$.

Theorem 1.1.12. If $A \otimes_K B$ is a simple ring, then A and B are both simple.

Proof. By symmetry, we only prove that A is simple. If A or B is the trivial ring then $A \otimes_K B$ is the trivial ring, a contradiction. Thus we assume both A and B are non-trivial. Suppose A is not simple, by lemma 1.1.6, there exists a non-trivial K-algebra A' and a K-algebra homomorphism $f : A \to A'$ such that ker $f \neq \{0\}$. Let $F : A \otimes_K B \to A' \otimes_K B$ be the base change of f, then since $A \otimes_K B$ is simple and $A' \otimes B$ is non-trivial (A' is non-trivial and B is faithfully flat because B is free), we conclude that F is injective. Then we have that

$$0 \xrightarrow{0} A \otimes_{\mathsf{K}} B \xrightarrow{\mathsf{F}} A' \otimes_{\mathsf{K}} B$$

is exact. Since B is faithfully flat as a K-module, tensorig with B reflects exact sequences, therefore

$$0 \xrightarrow{0} A \xrightarrow{f} A'$$

is exact as well. This is contradiction since f is not injective.

1.2 Subfields of Central Simple Algebras

Definition 1.2.1 (Subfield). For any field K and K-algebra A, a subfield $B \subseteq A$ is a commutative K-subalgebra of A that is closed under inverse for any non-zero member.

Remark 1.2.1. Subfields inherit a natural ordering from subalgebras.

Let K be any field and D a finite dimensional central division K-algebra and A a finite dimensional central simple algebra of A.

Lemma 1.2.2. Let k be a maximal subfield of D,

$$\dim_{\mathsf{K}} \mathsf{D} = (\dim_{\mathsf{K}} k)^2.$$

Proof. By lemma 3.4.11, we have that $\dim_{K} D = \dim_{K} C_{D}(k) \cdot \dim_{K} k$. Hence it is sufficient to show that $C_{D}(k) = k$. By the commutativity of k, we have that $k \leq C_{D}(k)$. Suppose $k \neq C_{D}(k)$: let $a \in C_{D}(k)$ that is not in k. We see that L := k(a) is another subalgebra of D that is strictly larger than k; a contradiction. Therefore $k = C_{D}(k)$ and the theorem is proved.

Lemma 1.2.3. Suppose L is a subfield of A, the following are equivalent:

1. $L = C_A(L)$

- 2. $\dim_{\mathsf{K}} \mathsf{A} = (\dim_{\mathsf{K}} \mathsf{L})^2$
- 3. for any commutative K-subalgebra $L' \subseteq A$, $L \subseteq L'$ implies L = L'

Proof. We prove the following:

- "1. implies 2.": this is lemma 3.4.11.
- "2. implies 1.": Since L is commutative, we always have $L \subseteq C_A(L)$. Hence we only need to show $\dim_K L = \dim_K C_A(L)$. This is because by lemma 3.4.11, we have that $\dim_K A = \dim_K L \cdot \dim_K C_A(L)$ and by 2. we have $\dim_K L \cdot \dim_K C_A(L) = \dim_K L \cdot \dim_K L$.
- "2. implies 3.": Since 2. implies 1., we assume $L = C_A(L)$, therefore all we need is to prove $L' \subseteq C_A(L)$. Let $x \in L'$ and $y \in L \subseteq L'$, we need to show xy = yx which is commutativity of L'.
- "3. implies 1.": By commutativity of L, we always have $L \subseteq C_A(L)$. For the other direction, suppose $C_A(L) \not\subseteq L$, then there exists some $a \in C_A(L)$ but not in L. Consider L' = L(a), by 3., we have L' = L which is a contradiction.

Chapter 2

Morita Equivalence

This chapter intertwine with section 3.2: section 2.2 depends on section 3.2.1; while section 3.2.2 depends on section 2.2.

2.1 Construction of the equivalence

Let R be a ring and $0 \neq n \in \mathbb{N}$. In this chapter, we prove that the category R-modules and the category of $\operatorname{Mat}_n(R)$ -modules are equivalent. Then we use the equivalence to prove several useful lemmas.

Construction 2.1.1. If M is an R-module, we have a natural $\operatorname{Mat}_n(R)$ -module structure on $\widehat{M} := M^n$ given by $(\mathfrak{m}_{ij}) \cdot (\nu_k) = \sum_j \mathfrak{m}_{ij} \cdot \nu_j$. If $f: M \to N$ is an R-linear map, then $\widehat{f}: M^n \to N^n$ given by $(\nu_i) \mapsto (f(\nu_i))$ is a $\operatorname{Mat}_n(R)$ -linear map. Thus we have a well-defined functor $\mathfrak{Mod}_R \Longrightarrow \mathfrak{Mod}_{\operatorname{Mat}_n(R)}$.

Remark 2.1.1. Note that all modules are assumed to be left modules; when we need to consider right R-modules, we will consider left R^{opp} -modules instead. We use δ_{ij} to denote the matrix whose (i, j)-th entry is 1 and 0 elsewhere. δ_{ij} forms a basis for matrices.

Construction 2.1.2. If M is a $\operatorname{Mat}_n(R)$ -module, then $\widetilde{M} := \{\delta_{ij} \cdot m | m \in M\} \subseteq M$ is an R-module whose R-action is given by $r \cdot (\delta_{ij} \cdot m) := (r \cdot \delta_{ij}) \cdot m$. More over if $f : M \to N$ is a $\operatorname{Mat}_n(R)$ -linear map, $\widetilde{f} : \widetilde{M} \to \widetilde{N}$ given by the restriction of f is R-linear. Hence, we have a functor $\mathfrak{Mod}_{\operatorname{Mat}_n(R)} \Longrightarrow \mathfrak{Mod}_R$.

Theorem 2.1.2 (Morita Equivalence). The functors constructed in construction 2.1.1 and construction 2.1.2 form an equivalence of category.

Proof. Let M be an R-module, then the unit $\widehat{M} \cong M$ is given by

$$\begin{array}{c} x\mapsto \sum_{j}x_{j} \\ (x,0,\ldots,0) \leftarrow x \end{array}$$

Let M be an $\operatorname{Mat}_n(R)$ -module, then the counit $\widehat{\widetilde{M}} \cong M$ is given by $\mathfrak{m} \mapsto (\delta_{\mathfrak{i}0} \cdot \mathfrak{m})$. This map is both injective and surjective.

2.2 Stacks 074E

Let A be a finite dimensional simple k-algebra.

Lemma 2.2.1. Let M and N be simple A-modules, then M and N are isomorphic as A-modules.

Proof. By theorem 3.2.6, there exists non-zero $n \in \mathbb{N}$, k-division algebra D such that $A \cong \operatorname{Mat}_n(D)$ as k-algebras. Then by theorem 2.1.2, we have equivalence of category $e : \mathfrak{Mod}_A \cong \mathfrak{Mod}_D$. Since simple module is a categorical notion (it can be defined in terms monomorphisms), e(M) and e(N) are simple D-modules. Since D is a division ring, e(M) and e(N) are isomorphic as D-modules, therefore M and N are isomorphic as A-modules. \Box

Lemma 2.2.2. Let M be an A-module, there exists a simple A-module S such that M is a direct sum of copies of S, i.e. $M \cong \bigoplus_{i \in I} S$ for some indexing set ι .

Proof. By theorem 3.2.6, there exists non-zero $n \in \mathbb{N}$, k-division algebra D such that $A \cong \operatorname{Mat}_n(D)$ as k-algebras. Then by theorem 2.1.2, we have equivalence of category $e : \mathfrak{Mod}_A \cong \mathfrak{Mod}_D$. Since simple module is a categorical notion (it can be defined in terms monomorphisms), $e^{-1}(D)$ is a simple module over A. Since e(M) is a free module over D, we can write e(M) as $\bigoplus_{i \in \iota} D$ for some indexing set ι . By precomposing the unit of e, we get an isomorphism $M \cong e^{-1}(\bigoplus_{i \in \iota} D)$. We only need to prove $e^{-1}(\bigoplus_{i \in \iota} D) \cong \bigoplus_{i \in \iota} e^{-1}(D)$. This is because direct sum is the categorical coproduct.

Remark 2.2.3. Note that by lemma 2.2.1, any two simple A-module are isomorphic, hence for any A-module M and any simple A-module S, we can write M as a direct sum of copies of S.

Lemma 2.2.4. Let M and N be two finite A-module with compatible k-action. Then M and N are isomorphic as A-module if and only if $\dim_k M$ and $\dim_k N$ are equal.

Proof. The forward direction is trivial as an A-linear isomorphism is a k-linear isomorphism as well. Conversely, suppose $\dim_k M = \dim_k N$. By lemma 2.2.2, there exists a simple A-module S such that $M \cong \bigoplus_{i \in \iota} S$ and $N \cong \bigoplus_{i \in \iota'} S$ as A-modules. Without loss of generality $S \neq 0$, for otherwise we have $M \cong N$ anyway. If either of ι or ι' is empty, then $\dim_k M = \dim_k N = 0$ implying that M = N = 0, we again have $M \cong N$. Thus, we assume both ι and ι' are non-empty. By pulling back the A-module structure on S to a k-module structure along $k \hookrightarrow A$, $M, N, S, \bigoplus_{i \in \iota} S, \bigoplus_{i \in \iota'} S$ are all finite dimensional k-vector spaces. Hence ι and ι' are finite. The equality $\dim_k M = \dim_k N$ tells us that $\iota \cong \iota'$ as set, hence $M \cong \bigoplus_{i \in \iota} S \cong \bigoplus_{i \in \iota'} S \cong N$ as required.

Let $A \cong Mat_n(D)$ as k-algebras for some k-division algebra and $n \neq 0$.

Lemma 2.2.5. D^n is a simple A-module where the module structure is given by pulling back the $Mat_n(D)$ -module structure of D^n .

Proof. By theorem 2.1.2, we have $\mathfrak{Mod}_A \cong \mathfrak{Mod}_D \cong \mathfrak{Mod}_{\operatorname{Mat}_n(D)}$. Since D is a simple D-module, D^n is a simple $\operatorname{Mat}_n(D)$ module and consequently, a simple A-module.

Remark 2.2.6. Note that any A-linear endomorphism of D^n is $Mat_n(D)$ -linear, and vice versa. Thus we have $End_A(D^n) \cong End_{Mat_n(D)}(D^n)$ as k-algebras.

Lemma 2.2.7. End_A (D^n) is isomorphic to D^{opp} as k-algebras.

Proof. Indeed, we calculate:

$$\begin{split} \operatorname{End}_{A}\left(\mathsf{D}^{\mathfrak{n}}\right) &\cong \operatorname{End}_{\operatorname{Mat}_{\mathfrak{n}}\left(\mathsf{D}\right)}\left(\mathsf{D}^{\mathfrak{n}}\right) \\ &\cong \operatorname{End}_{\mathsf{D}}\mathsf{D} \qquad \text{by theorem } 2.1.2, \ \mathfrak{Mod}_{\mathsf{D}} \cong \mathfrak{Mod}_{\operatorname{Mat}_{\mathfrak{n}}\mathsf{D}} \\ &\cong \mathsf{D}^{\mathsf{opp}} \end{split}$$

Lemma 2.2.8. Let M be a simple A-module, then $\operatorname{End}_A M \cong D^{\mathsf{opp}}$ as k-algebras.

Proof. By theorem 2.1.2, D^n is simple as A-module; hence by lemma 2.2.1, D^n and M are isomorphic as A-module. Lemma 2.2.7 gives the desired result.

Remark 2.2.9. In particular, if M is a simple A-module, then $\operatorname{End}_A M$ is a simple k-algbera.

Lemma 2.2.10. Let M be a simple A-module, then $End_A M$ has finite k-dimension.

Proof. By theorem 3.2.4, such D and n always exists. Hence we only need to show D^{opp} has finite k-dimension. Since $\dim_k A = \dim_k \operatorname{Mat}_n(D)$ are both finite, we conclude D^{opp} is finite as a k-vector space by pulling back the finiteness along $D \hookrightarrow \operatorname{Mat}_n(D)$.

Remark 2.2.11. Note that for all A-module M, $\operatorname{End}_{\operatorname{End}_A M} M$ is a k-algebra as well, with $k \hookrightarrow \operatorname{End}_{\operatorname{End}_A M} M$ given by $\mathfrak{a} \mapsto (\mathfrak{x} \mapsto \mathfrak{a} \cdot \mathfrak{x})$. Thus, we always have a k-algebra homomorphism $A \to \operatorname{End}_{\operatorname{End}_A M} M$ given by the A-action on M. When A is a simple ring, this map is injective.

Definition 2.2.1 (Balanced Module). For any ring A and A-module M, we say M is a balanced A-module, if the A-linear map $A \to \operatorname{End}_{\operatorname{End}_A M} M$ is surjective.

Remark 2.2.12. Balancedness is invariant under linear isomorphism.

Lemma 2.2.13. For any ring A, A is balanced as A-module.

Proof. If $f \in \operatorname{End}_{\operatorname{End}_A M} A$, then the image of f(1) under $A \to \operatorname{End}_{\operatorname{End}_A} A$ is f again.

We assume again that A is a finite dimensional simple k-algebra.

Lemma 2.2.14. Any simple A-module is balanced.

Proof. Indeed, if M is a simple A-module, then $A \cong \bigoplus_{i \in \iota} M$ for some indexing set ι by lemma 2.2.2. Since A is balanced, $\bigoplus_{i \in \iota} M$ is balanced. Let $g \in \operatorname{End}_{\operatorname{End}_A M} M$, we can define a corresponding $G \in \operatorname{End}_{\operatorname{End}_{\oplus_i M}} (\bigoplus_i M)$ by sending (ν_i) to $(g(\nu_i))$. Since $\bigoplus_i M$ is balanced, we know that for some $a \in A$, G is the image of a under $A \to \operatorname{End}_{\operatorname{End}_{\oplus_i M}} (\bigoplus_i M)$. Then the image of a under $A \to \operatorname{End}_{\operatorname{End}_{\oplus_i M}} M$ is g.

Lemma 2.2.15. For any simple A-module M, we have $A \cong \operatorname{End}_{\operatorname{End}_A M} M$ as k-algebras.

Proof. The canonical map $A \to \operatorname{End}_{\operatorname{End}_A M} M$ is both injective and surjective, as M is a balanced A-module and A is a simple ring.

Chapter 3

Results in Noncommutative Algebra

3.1 A Collection of Useful Lemmas

In section, we collect some lemmas that does not really belong to anywhere.

3.1.1 Tensor Product

Lemma 3.1.1. Let M and N be R-modules such that $\mathcal{C}_{i \in \iota}$ is a basis for N, then every elements of $x \in M \otimes_R N$ can be uniquely written as $\sum_{i \in \iota} \mathfrak{m}_i \otimes \mathfrak{C}_i$ where only finitely many \mathfrak{m}_i 's are non-zero

Proof. Given the basis C, we have R-linear isomorphism $N \cong \bigoplus_{i \in \iota} R$, hence $M \otimes_R N \cong \bigoplus_{i \in \iota} (M \otimes_R R) \cong \bigoplus_{i \in \iota} M$ as R-modules. \Box

By switching M and N, the symmetric statement goes without saying.

Lemma 3.1.2. Let K be a field, M and N be flat K-modules. Suppose $p \subseteq M$ and $q \subseteq N$ are K-submodules, then $(p \otimes_K N) \sqcap (M \otimes_K q) = p \otimes_K q$ as K-submodules.

Proof. The hard direction is to show $(p \otimes_R N) \sqcap (M \otimes_R q) \leq p \otimes_R q$. Consider the following diagram:

$$p \otimes_{K} q \xrightarrow{u} M \otimes_{K} q \xrightarrow{\nu} M/_{p} \otimes_{K} q$$
$$\downarrow^{\alpha} \qquad \qquad \downarrow^{\beta} \qquad \qquad \downarrow^{\gamma}$$
$$p \otimes_{K} N \xrightarrow{u'} M \otimes_{K} N \xrightarrow{\nu'} M/_{p} \otimes_{K} N$$

Since M/p is flat, γ is injective. Let $z \in (p \otimes_R N) \sqcap (M \otimes_R q) = \operatorname{im} \beta \sqcap \operatorname{im} u'$. By abusing notation, replace z with some elements of $M \otimes_K q$ and continue with $\beta(z) \in \operatorname{im} \beta \sqcap \operatorname{im} u'$. Since $\nu'(\beta(z)) = \gamma(\nu(z))$ and that $\beta(z) \in \operatorname{im} u'$, we conclude that $\gamma(\nu(z)) = 0$, that is $z \in \ker \nu = \operatorname{im} u$. We abuse notation again, let $z \in p \otimes_K q$, we need to show $\beta(u(z)) \in \operatorname{im} \beta \sqcap \operatorname{im} u'$, but $\beta \circ u = u' \circ \alpha$, we finish the proof.

3.1.2 Centralizer and Center

Let R be a commutative ring and A, B be two R-algebras. We denote centralizer of $S \subseteq A$ by $C_A S$ and centre of A by Z(A).

Lemma 3.1.3. Let S, T be two subalgebras of A, then $C_A(S \sqcup T) = C_A(S) \sqcap C_A(T)$.

This lemma can be generalized to centralizers of arbitrary supremum of subalgebras.

Lemma 3.1.4. If we assume B is free as R-module, then for any R-subalgebra S, we have that $C_{A \otimes_R B}$ (im $(S \to A \otimes_R B)$) is $C_A(S) \otimes_R B$

A symmetric statement goes without saying.

Proof. Let $w \in C_{A \otimes_R B}$ (im $(S \to A \otimes_R B)$). Since B is free, we choose an arbitrary basis \mathcal{B} ; by lemma 3.1.1, we write $w = \sum_i \mathfrak{m}_i \otimes_K \mathcal{B}_i$. It is sufficient to show that $\mathfrak{m}_i \in C_A(S)$ for all i. Let $a \in S$, we need to show that $\mathfrak{m}_i \cdot a = a \cdot \mathfrak{m}_i$. Since w is in the centralizer, $w \cdot (a \otimes 1) = (a \otimes 1) \cdot w$. Hence we have $\sum_i (a \cdot \mathfrak{m}_i) \otimes \mathcal{B}_i = \sum_i (\mathfrak{m}_i \cdot a) \otimes \mathcal{B}_i$. By the uniqueness of lemma 3.1.1, we conclude $a \cdot \mathfrak{m}_i = \mathfrak{m}_i \cdot a$.

Remark 3.1.5. A useful special case is when S = A, then since $C_A(A) = Z(A)$, we have $C_{A\otimes_R B}$ (im $(A \to A \otimes_R B)$) is equal to $Z(A)\otimes_R B$. Since im $(R \otimes_R B \to A \otimes_R B) = \text{im } (A \to A \otimes_R B)$, we conclude its centralizer in $A \otimes_R B$ is $Z(A) \otimes_R B$.

Corollary 3.1.6. Assume R is a field. Let S and T be R-subalgebras of A and B respectively. Then $C_{A\otimes_R B}(S\otimes_R T)$ is equal to $C_A(S)\otimes_R C_B(T)$

Proof. From lemma 3.1.2, $C_A(S) \otimes_R C_B(T)$ is equal to $(C_A(S) \otimes_R B) \sqcap (A \otimes_R C_B(T))$. The left hand side $C_A(S) \otimes_R B$ is equal to $C_{A \otimes_R B}$ (im $(S \to A \otimes_R B)$) and the right hand side is equal to $C_{A \otimes_R B}$ (im $(T \to A \otimes_R B)$). Hence by lemma 3.1.3, their intersection is equal to

$$\mathsf{C}_{\mathsf{A}\otimes_{\mathsf{R}}\mathsf{B}}\left(\mathrm{im}\left(\mathsf{S}\to\mathsf{A}\otimes_{\mathsf{R}}\mathsf{B}\right)\sqcup\mathrm{im}\left(\mathsf{T}\to\mathsf{A}\otimes_{\mathsf{R}}\mathsf{B}\right)\right)$$

This is precisely $C_{A \otimes_R B}$ (S $\otimes_R T$).

Corollary 3.1.7. Assume R is a field. The centre of $A \otimes_R B$ is $Z(A) \otimes_R Z(B)$.

Proof. Special case of corollary 3.1.6.

3.1.3 Some Isomorphisms

Construction 3.1.1. Let R be a commutative ring and A an R-algebra. Then we have an R-algebra homomorphism $A \otimes_R A^{opp} \cong \operatorname{End}_R A$ given by $a \otimes 1 \mapsto (a \cdot \bullet)$ and $1 \otimes a \mapsto (\bullet \cdot a)$. When R is a field and A is a finite dimensional central simple algebra, this morphism is an isomorphism by corollary 1.1.8.

Construction 3.1.2. Let A be an R-algebra and M an A-module. We have isomorphism $\operatorname{End}_A(M^n) \cong \operatorname{Mat}_n(\operatorname{End}_A M)$ as R-algebras. For any $f \in \operatorname{End}_A(M^n)$, we define a matrix M whose (i, j)-th entry is

$$x \mapsto f(0,\ldots,x,\ldots,0)_i,$$

where x is at the j-th position. On the other hand, if $M \in Mat_n$ (End_A M), we define an A-linear map $f: M^n \to M^n$ by

$$\nu\mapsto \left(\sum_j M_{ij}\nu_j\right)_i.$$

Construction 3.1.3. Let A be an R-algebra. Then $\operatorname{Mat}_{\mathfrak{m}}(\operatorname{Mat}_{\mathfrak{n}}(A)) \cong \operatorname{Mat}_{\mathfrak{m}\mathfrak{n}}(A)$. The trick is to think $\operatorname{Mat}_{\mathfrak{m}} A$ as $\{0, \ldots, \mathfrak{m}-1\} \times \{0, \ldots, \mathfrak{m}-1\} \to A$. Since the indexing set $\{0, \ldots, \mathfrak{m}-1\}$ bijects with $(\{0, \ldots, \mathfrak{m}-1\} \times \{0, \ldots, \mathfrak{n}-1\})$, the isomorphism is just function currying, function uncurrying, precomposing and postcomposing bijections.

Construction 3.1.4. Let A, B be R-algebras. Then $\operatorname{Mat}_{mn}(A \otimes_R B) \cong \operatorname{Mat}_m(A) \otimes_R \operatorname{Mat}_n B$ as K-algebras. We first construct R-algebra isomorphism $A \otimes_R \operatorname{Mat}_n(R) \cong \operatorname{Mat}_n(A)$:

$$\begin{split} a\otimes 1 &\mapsto \operatorname{diag} a \text{ and } 1\otimes (\mathfrak{m}_{ij}) \mapsto (\mathfrak{m}_{ij}) \\ \sum_{i,i} \mathfrak{m}_{ij} \otimes \delta_{ij} &\leftarrow (\mathfrak{m}_{ij}), \end{split}$$

where diag is the diagonal matrix and δ_{ij} the matrix whose only non-zero entry is at (i, j)-th and is equal to 1. Thus $\operatorname{Mat}_{\mathfrak{m}}(A) \otimes_{\mathsf{R}} \operatorname{Mat}_{\mathfrak{n}}(B) \cong (A \otimes_{\mathsf{R}} B) \otimes_{\mathsf{R}} (\operatorname{Mat}_{\mathfrak{m}}(\mathsf{R}) \otimes_{\mathsf{R}} \operatorname{Mat}_{\mathfrak{n}}(\mathsf{R}))$ as R -algebra. The Kronecker product gives us an R -algebra map $\operatorname{Mat}_{\mathfrak{m}}(\mathsf{R}) \otimes_{\mathsf{R}} \operatorname{Mat}_{\mathfrak{n}}(\mathsf{R}) \to \operatorname{Mat}_{\mathfrak{m}\mathfrak{n}}(\mathsf{R})$. We want this map to be an isomorphism. By lemma 1.1.6, we only need to prove it to be surjective: for all $\delta_{ij} \in \operatorname{Mat}_{\mathfrak{m}\mathfrak{n}}(\mathsf{R})$, we interpret $\operatorname{Mat}_{\mathfrak{m}\mathfrak{n}}(\mathsf{R})$ as a function $\{0, \ldots, \mathfrak{m}-1\} \times \{0, \ldots, \mathfrak{n}-1\} \to \mathsf{R}$, then δ_{ij} is the image of $\delta_{\mathfrak{a}\mathfrak{b}} \otimes \delta_{\mathfrak{c}\mathfrak{d}} \in \operatorname{Mat}_{\mathfrak{m}}(\mathsf{R}) \otimes_{\mathsf{R}} \operatorname{Mat}_{\mathfrak{n}}(\mathsf{R})$ where $\mathfrak{i} = (\mathfrak{a}, \mathfrak{c})$ and $\mathfrak{j} = (\mathfrak{b}, \mathfrak{d})$. Combine everything together, we see $\operatorname{Mat}_{\mathfrak{m}\mathfrak{n}}(A \otimes_{\mathsf{R}} B)$ is isomorphic to $\operatorname{Mat}_{\mathfrak{m}\mathfrak{n}}(A \otimes_{\mathsf{R}} B)$ as R -algebras.

3.2 Wedderburn-Artin Theorem for Simple Rings

3.2.1 Classification of Simple Rings

Lemma 3.2.1 (minimal ideal of simple rings). Let A be a ring and I a non-trivial minimal left ideal of A, then I is a simple A-module.

Proof. Let $J \leq I$ be an A-submodule of I, suppose J is non-trivial, we prove that J = I. Then the image J' of J under $I \hookrightarrow A$ is a non-trivial left ideal of A. Since $I \hookrightarrow A$ is injective, it is sufficient to prove that J' = I. This is because $J' \leq I$ and $J' \neq J$.

Lemma 3.2.2. Let A be a simple ring and I a non-trivial left ideal. One can write $1 \in A$ as $\sum_{i=0}^{n} x_i y_i$ for some $x_i \in I$ and $y_i \in A$.

Proof. Let I' be the two-sided ideal spanned by I. Then since A is a simple ring, I' = A. Thus $1 \in I'$. One can write $1 \in A$ as $\sum_i a_i x_i b_i$ for some $x_i \in I$ and $a_i, b_i \in A$, since I is a left ideal $a_i x_i \in I$ as well.

Now, we can find the smallest n such that $1 \in A$ can be written as $\sum_{i=0}^{n} x_i y_i$ for some $x_i \in I$ and $y_i \in A$. Let us fix the notations n, x_i and y_i

Lemma 3.2.3. The n, x_i and y_i are all non-zero.

Proof. If n is 0, then 1 = 0 in A, but all simple rings are non-trivial. We argue by contradiction to prove that all x_i and y_i are non-zero. Assume there exists a j such that $y_j \neq 0$ implies $x_j = 0$. Without loss of generality, we assume j = 0. Then $1 = \sum_{i=0}^{n} x_i y_i = \sum_{i=1}^{n} x_i y_i$. This contradicts the minimality of n.

Theorem 3.2.4 (Wedderburn). Let A be a simple ring and I a non-trivial minimal left ideal. Then there exists a non-zero $n \in \mathbb{N}$ such that $A \cong I^n$ as A-modules.

Proof. We continue to write $1 = \sum_{i=0}^{n} x_i y_i$ in the shortest possible manner. Then we can define an A-linear map $g: I^n \to A$ by $(v_i) \mapsto \sum v_i y_i$. Then g is surjective: if $a \in A$, then (ax_i) is mapped to a under g. g is injective as well: support $g(v_i) = 0 = \sum_i v_i y_i$ with (v_i) not all zero. Without loss of generality, we assume $v_0 \neq 0$, then the ideal $\langle v_0 \rangle$ is equal to I (since I is simplehemma 3.2.1). Thus $x_0 \in I = \langle v_0 \rangle$; implying that $x_0 = r \cdot v_0$ for some $r \in A$. Thus $1 = 1 - r \cdot 0 = \sum_{i=0}^{n} x_i y_i - \sum_{i=0}^{n} r \cdot v_i y_i$. In this way, we cancelled the term at i = 0, contradicting the minimality of n. Hence g is an isomorphism.

Theorem 3.2.5 (Wedderburn-Artin (Ideal)). Let A be an Artinian simple ring. There exists a non-zero n and an ideal $I \subseteq A$ such that I is simple as an A-module and $A \cong I^n$ as A-module.

Proof. By theorem 3.2.4, we only need a minimal left ideal. Since A is Artinian, such ideal exists. $\hfill \Box$

Theorem 3.2.6 (Wedderburn-Artin (Algebra)). Let K be a field and B an finite dimensional simple algebra over K. There exists a non-zero $n \in \mathbb{N}$ and a division K-algebra S such that $B \cong Mat_n(S)$.

Proof. By theorem 3.2.5, we can find a n and a minimal left ideal I such $A \cong I^n$ as A-modules. Note that $(\operatorname{End}_B I)^{opp}$ is a division ring. Then since $B^{opp} \cong \operatorname{End}_B B \cong \operatorname{End}_B(I^n) \cong \operatorname{Mat}_n(\operatorname{End}_B I)$ as rings where the final isomorphism is from construction 3.1.2, we have $e : B \cong \operatorname{Mat}_n(\operatorname{End}_B I)^{opp}$ as rings. We also have a K-algebra structure on $(\operatorname{End}_B I)^{opp}$ given by $(a \cdot f)(x) = f(a \cdot x)$, and this algebra structure promotes the ring isomorphism e to a k-algebra isomorphism.

3.2.2 Uniqueness of the Classification

In the previous section, we know that finite dimensional simple K-algebra B over is in fact a matrix algebras of a division K-algebra S. In this section, we prove that the division algebra S is essentially unique.

Theorem 3.2.7 (Uniqueness of Wedderburn-Artin theorem). Let B be a finite-dimensional simple K-algebra. Suppose B is isomorphic as k-algebras to both $\operatorname{Mat}_n(D)$ and $\operatorname{Mat}_{n'}(D')$ where n, n' are non-zero natural numbers and D, D' are k-division algebra, then n = n' and $D \cong D'$ as k-algebras.

Proof. Since D^n is a simple B-module, by lemma 2.2.8, we see that $\operatorname{End}_A D^n \cong D^{opp}$ and $\operatorname{End}_A D^n \cong D'^{opp}$ as k-algebras. Thus $D^{opp} \cong D'^{opp}$ as k-algebras, consequently $D \cong D'$ as k-algebras as well. Since $A \cong \operatorname{Mat}_n(D) \cong \operatorname{Mat}_{n'}(D') \cong \operatorname{Mat}_{n'}(D)$ as k-algebras and A is finite k-dimensional, a dimension argument shows that n = n'.

3.3 Skolem-Noether Theorem

Let K be a field, A, B be K-algebras where A is central simple and finite K-dimensional and B is simple. Let M be a simple A-module.

Construction 3.3.1. For any K-algebra homomorphism $f : B \to A$, we give $M \neq B \otimes_K End_A M$ -module structure by defining $(b \otimes l) \cdot m$ to be $f(b) \cdot l(m)$. To emphasis f, we denote M with the $B \otimes_K End_A M$ -module structure by M^f .

Lemma 3.3.1. Let $f:B\to A$ be a K-algebra homomorphism, M^f is finitely generated as a $B\otimes_K \operatorname{End}_A M\operatorname{-module}.$

Proof. Since M is a finite A-module and A a finite dimensional K-vector space, M is a finite dimensional K-vector space as well. Suppose $S \subseteq M$ generates M as K-module, the claim is that S generates M^f as well. Let $x \in M^f$, we write $x = \sum_i \lambda_i \cdot s_i$ with $\lambda_i \in K$ and $s_i \in S$. Note that $\lambda_i \cdot s_i = (\rho(\lambda_i) \otimes 1_M)$ in M^f where $\rho: K \to B$ is the map giving B its K-algebra structure. Hence x is in the span of S in M^f as well.

Remark 3.3.2. Given that B is simple, any k-algebra homomorphism $f : B \to A$ injective; therefore by finite K-dimensionality of A, B is finite K-dimensional as well.

Lemma 3.3.3. Let $f,g:B\to A$ be two K-algebra homomorphisms. Then M^f and M^g are isomorphic as $B\otimes_K\operatorname{End}_AM$ -module.

Proof. By lemma 2.2.4, it is sufficient to prove $\dim_K M^f = \dim_K M^g$. But as K-vector space, M^f and M^g are literally M.

Theorem 3.3.4 (Skolem-Noether). Let $f, g : B \to A$ be two K-algebra homomorphism. Then f and g differ only by a conjugation. That is there exists a unit $x \in A^{\times}$ such that $g = xfx^{-1}$.

Proof. Let M be any simple A-module (which exists by lemma 2.2.5). By lemma 3.3.3, we have some isomorphism $\phi : M^f \cong M^g$ as $B \otimes_K \operatorname{End}_A M$ -module. Since M is simple, we have that M is a balanced A-module by lemma 2.2.15. Let e denote the k-algerba isomorphism $A \cong \operatorname{End}_{\operatorname{End}_A M} M$ given by the A-action on M. Since both ϕ and ϕ^{-1} defines an element of $\operatorname{End}_{\operatorname{End}_A M} M$, we define $a := e^{-1}(\phi)$ and $b := e^{-1}(\phi^{-1})$. Then ab = 1 since $e(ab) = e(a) \cdot e(b) = \phi \phi^{-1} = 1$. We prove that the image of f and afb under e are the same; that is for all $x \in B$ and $m \in M$, e(g(x))(m) = e(af(x)b)(m). The right hand side is equal to

$$\begin{split} e(af(x)b)(m) &= (e(a) \circ e(f(x)) \circ e(b))(m) \\ &= \left(\varphi \circ e(f(x)) \circ \varphi^{-1} \right)(m) \quad . \\ &= \varphi \left(f(x) \cdot \varphi^{-1}(m) \right) \end{split}$$

Similarly, the left hand side is equal to $g(x) \cdot m$. Note that ϕ is $B \otimes \operatorname{End}_A M$ -linear. Therefore $\phi((x \otimes 1) \cdot \phi^{-1}(m)) = (x \otimes 1) \cdot m$. Unfolding the definition of M^f and M^g , we see this is saying precisely $\phi(f(x) \cdot \phi^{-1}(m)) = g(x) \cdot m$.

3.4 Double Centralizer Theorem

In this section let F be a field and A an F-algebra. Define $\mathcal{L}_A\subseteq \operatorname{End}_F A$ to be

$$\{f: A \to A | f(x) = ax \text{ for some } a \in A\},\$$

i.e. F-linear maps defined by left multiplication; similarly define \mathcal{R}_A . Note that \mathcal{L}_A and \mathcal{R}_A are F-subalgebras of $\operatorname{End}_F A$. When we need to stree the underlying field is F, we also write \mathcal{L}_A^F and \mathcal{R}_A^F . We assume A to be a finite dimensional central simple F-algebra.

Lemma 3.4.1. The centralizer of \mathcal{L}_A in End_F A is smaller than or equal to \mathcal{R}_A :

$$C_{\operatorname{End}_{\mathsf{F}}\mathsf{A}}(\mathcal{L}_{\mathsf{A}}) \leqslant \mathcal{R}_{\mathsf{A}}.$$

Proof. Indeed, let $x \in C_{\operatorname{End}_F A}(\mathcal{L}_A)$. Recall from construction 3.1.1 that $e : A \otimes_F A^{\operatorname{opp}} \cong \operatorname{End}_F A$ as F-algebras. Then $e^{-1}(x)$ is in $C_{A \otimes_F A^{\operatorname{opp}}}(\operatorname{im} (A \to A \otimes_F A^{\operatorname{opp}}))$ (for e sends $a \otimes 1$ to the F-linear map $(a \cdot \bullet)$). Since $C_{A \otimes_F A^{\operatorname{opp}}}(\operatorname{im} (A \to A \otimes_F A^{\operatorname{opp}})) = Z(A) \otimes_F A^{\operatorname{opp}} = F \otimes_F A^{\operatorname{opp}} = \operatorname{im} (A^{\operatorname{opp}} \to A \otimes_F A^{\operatorname{opp}})$, we find some $y \in A^{\operatorname{opp}}$ such that $1 \otimes y = e^{-1}(x)$. Therefore $e(1 \otimes y) = x$; but $e(1 \otimes y)$ is in \mathcal{R}_A for it is the linear map $(\bullet \cdot y)$.

Remark 3.4.2. For any F-algebra B, every element in $C_{\operatorname{End}_F B}(\mathcal{L}_B)$ is in fact Z(B)-linear. Let $x \in C_{\operatorname{End}_F B}(\mathcal{L}_B), z \in Z(B)$ and $b \in B$, we have $x(z \cdot b) = z \cdot x(b)$ because x commutes with the linear map $(z \cdot \bullet)$.

Remark 3.4.3. A is a Z(A)-algebra whose algebra structure is given by $Z(A) \hookrightarrow A$. By lemma 1.1.2, Z(A) is a field. A is finite dimensional as a Z(A)-module because of the tower A/Z(A)/F.

Lemma 3.4.4. As F-algebras, we have $\mathcal{R}_A \cong A^{\mathsf{opp}}$.

Proof. We prove the map $A^{opp} \to \mathcal{R}_A$ is bijective. It is injective because if $(\bullet \cdot a) = (\bullet \cdot b)$, then $a = 1 \cdot a = 1 \cdot b = b$. The map is surjective by the definition of \mathcal{R}_A .

Lemma 3.4.5. Let B be any simple F-algebra (not necessarily central). The centralizer of \mathcal{L}_B in End_F B is equal to \mathcal{R}_B .

Proof. It is straightforward to show $\mathcal{R}_B^F \leq C_{\operatorname{End}_F A}(\mathcal{L}_B^F)$. So we only need to prove $C_{\operatorname{End}_F A}(\mathcal{L}_B^F) \leq \mathcal{R}_B^F$. By lemma 3.4.1, since B is a central simple finite dimensional Z(B)-algebra, we have that

$$C_{\operatorname{End}_{Z(B)}B}\left(\mathcal{L}_{B}^{Z(B)}\right) \leqslant \mathfrak{R}_{B}^{Z(B)}.$$

Suppose $f \in \operatorname{End}_F B$ is in $C_{\operatorname{End}_F B}B$, by remark 3.4.2, f is Z(B)-linear as well. Then f is in $\mathcal{R}_B^{Z(B)}$; that is f is equal to $(\bullet \cdot b)$ for some $b \in B$ as Z(B)-linear maps. Then f is also equal to $(\bullet \cdot b)$ as F-linear maps.

Construction 3.4.1. Let B be any F-algebra and $S \subseteq B$ an F-subalgebra. For any $x \in B^{\times}$, we have that $xSx^{-1} := \{xsx^{-1} | s \in S\}$ is an F-subalgebra of B as well. We have the obvious F-algebra isomorphism $S \cong xSx^{-1}$ given by $s \mapsto xsx^{-1}$ and $x^{-1}tx \leftrightarrow t$. Therefore dim_F $S = \dim_F xSx^{-1}$ and S is a simple ring if and only if xSx^{-1} is a simple ring.

Lemma 3.4.6. Let B be any F-algebra, $x \in B^{\times}$ and $S \subseteq B$ be an F-subalgebra of B, then $C_B(xSx^{-1}) = x(C_B(S))x^{-1}$.

Proof. If $a \in C_B(xSx^{-1})$, then $x^{-1}ax$ is in $C_B(S)$. Conversely if a is equal to xbx^{-1} with $b \in C_B(S)$, then it is in $C_B(xSx^{-1})$ as well.

Remark 3.4.7. For any finite dimensional F-module B, we have isomorphism $\operatorname{End}_F B \cong \operatorname{Mat}_{\dim_F B} F$ as F-algebras. Hence $\operatorname{End}_F B$ is a finite-dimensional central simple algebra over F.

Lemma 3.4.8. Let $S \subseteq A$ be a simple F-subalgebra, then $A \otimes_F \mathcal{R}_S$ is a simple ring.

Proof. By lemma 3.4.4, we have $A \otimes \Re_S \cong A \otimes S^{opp}$ as F-algebras. The claim follows from theorem 1.1.10.

Lemma 3.4.9. Let $S \subseteq A$ be a simple F-subalgebra, then there exists an $x \in (A \otimes_F \operatorname{End}_F S)^{\times}$ such that $C_A(S) \otimes_F \operatorname{End}_F S$ is isomorphic to $x (A \otimes_F \mathcal{R}_S) x^{-1}$ as F-algebras.

Proof. By lemma 1.1.9 and theorem 1.1.10, $A \otimes_F C_A(S)$ is a central simple F-algebra. Let $f: S \to A \otimes_F \operatorname{End}_F S$ be an F-algebra homomorphism defined by $s \mapsto s \otimes 1_S$ and $g: S \to A \otimes_F \operatorname{End}_F S$ be an F-algebra homomorphism defined by $1_A \otimes (s \cdot \bullet)$. Then by theorem 3.3.4, we that there exists some $x \in (A \otimes_F \operatorname{End}_F S)^{\times}$ such that $f = xgx^{-1}$. Then we have $S \otimes_F \operatorname{End}_F S$ is equal to $x(A \otimes_F \mathcal{L}_S) x^{-1}$: indeed the left hand side is im f while the right handside is $x (\operatorname{im} g) x^{-1}$. Therefore $C_{A \otimes_F \operatorname{End}_F S} (S \otimes_F \operatorname{End}_F S) = C_{A \otimes_F \operatorname{End}_F S} (x(A \otimes_F \mathcal{R}_S) x^{-1})$. By lemma 3.4.6, the right hand side is equal to $xC_{A \otimes_F \operatorname{End}_F S} (A \otimes_F \mathcal{L}_S) x^{-1}$ which is $x(A \otimes_F C_{\operatorname{End}_F S} (\mathcal{L}_S)) x^{-1}$ by lemma 3.1.4 which is $x(A \otimes_F \mathcal{R}_S) x^{-1}$ by lemma 3.4.5.

Lemma 3.4.10. Let $S \subseteq A$ be a simple F-subalgebra, then $C_A(S)$ is simple as well.

Proof. By lemma 3.4.9, $C_A(S) \otimes_F \operatorname{End}_F S$ is isomorphic to $x (A \otimes_F \mathcal{R}_S) x^{-1}$ as F-algebras. Then $C(S) \otimes_F \operatorname{End}_F S$ is simple since $A \otimes_F \mathcal{R}_S$ is simple by lemma 3.4.8. By theorem 1.1.12, $C_A(S)$ is simple.

Lemma 3.4.11. Let $S \subseteq A$ be a simple F-subalgebra. Then

 $\dim_F C_A(S) \cdot \dim_F S = \dim_F A.$

Proof. By lemma 3.4.9, $C_A(S) \otimes_F \operatorname{End}_F S$ is isomorphic to $x (A \otimes_F \mathcal{R}_S) x^{-1}$ as F-algebras. Hence $\dim_F (C_A(S) \otimes_F \operatorname{End}_F S) = \dim_F (A \otimes_F \mathcal{R}_S)$ where the left hand side is $\dim_F C_A(S) \cdot \dim_F \operatorname{End}_F S$ and the right hand side is $\dim_F A \cdot \dim_F \mathcal{R}_S$. Since $\dim_F \operatorname{End}_F S = \dim_F S^2$ and $\dim_F \mathcal{R}_S = \dim S$ (by lemma 3.4.4), we proved this lemma.

Corollary 3.4.12. Let $S \subseteq A$ be a central simple F-subalgebra,

$$A \cong B \otimes_F C_A(B).$$

Proof. By lemma 3.4.10, $C_A(B)$ is simple and by theorem 1.1.10, $B \otimes_F C_A(B)$ is simple. Hence the map $B \otimes_F C_A(B) \to A$ induced by $B \hookrightarrow A$ and $C_A(B) \hookrightarrow A$ is injective. By corollary 1.1.8, we only need to show $\dim_F B \otimes_F C_A(B) = \dim_F A$ which is precisely lemma 3.4.11.

Theorem 3.4.13 (Double Centralizer). Let $S \subseteq A$ be a simple F-subalgebra, we have

 $C_A(C_A(S)) = S.$

Proof. It is straightforward that $S \leq C_A(C_A(S))$. By lemma 3.4.10, $C_A(S)$ is simple, hence $\dim_F C_A(C_A(S)) \cdot \dim_F C_A(S) = \dim_F A = \dim_F C_A(S) \cdot \dim_F S$ (by applying lemma 3.4.11 twice), i.e. $\dim_F C_A(C_A(S)) = \dim_F S$. This equality of dimension gives us the desired result.

Chapter 4

Brauer Group

4.1 Construction of Brauer Group

Let K be a field. We denote the class of finite dimensional central simple K-algebras as $C\!S\!A_K.$ When K is clear, we drop the subscript.

Remark 4.1.1. By lemma 1.1.9 and theorem 1.1.10, CSA is closed under tensor product, that is if $A, B \in CSA$, we have $A \otimes_K B \in CSA$ as well.

Definition 4.1.1 (Brauer Equivalence). For any two $A, B \in CSA$, we say A and B are Brauer equivalent, when there exists $m, n \in \mathbb{N}_{\geq 0}$ such that $\operatorname{Mat}_{m}(A) \cong \operatorname{Mat}_{n} B$ as K-algebras. We denote this relation as $A \sim_{\operatorname{Br}_{K}} B$, when K is clear, we drop the subscript.

Remark 4.1.2. Isomorphic K-algebras are Brauer equivalent.

Lemma 4.1.3. $\sim_{\rm Br}$ is reflexive.

Proof. Indeed, $A \cong Mat_1(A)$ as K-algerbas.

Lemma 4.1.4. $\sim_{\rm Br}$ is symmetric.

Proof. Indeed, just exchange m and n.

Lemma 4.1.5. $\sim_{\rm Br}$ is transitive.

Proof. Let $A \sim_{Br} B$ and $B \sim_{Br} C$; that is for some $\mathfrak{m}, \mathfrak{n}, \mathfrak{p}, \mathfrak{q} \in \mathbb{N}_{\geq 0}$ we have $\operatorname{Mat}_{\mathfrak{n}}(A) \cong \operatorname{Mat}_{\mathfrak{m}}(B)$ and $\operatorname{Mat}_{\mathfrak{p}}(B) \cong \operatorname{Mat}_{\mathfrak{q}}(C)$ as K-algebras. Hence, from construction 3.1.3, we have the following:

$$\begin{split} \operatorname{Mat}_{\operatorname{np}}(A) &\cong \operatorname{Mat}_{\operatorname{p}}(\operatorname{Mat}_{\operatorname{n}}(A)) \cong \operatorname{Mat}_{\operatorname{p}}(\operatorname{Mat}_{\operatorname{m}}(B)) \\ &\cong \operatorname{Mat}_{\operatorname{mp}}(B) \cong \operatorname{Mat}_{\operatorname{m}}(\operatorname{Mat}_{\operatorname{p}}(B)) \\ &\cong \operatorname{Mat}_{\operatorname{m}}(\operatorname{Mat}_{\operatorname{q}}(C)) \cong \operatorname{Mat}_{\operatorname{mq}}(C). \end{split}$$

In another word, $A \sim_{Br} C$.

Hence \sim_{Br} is really an equivalence relation, we denote the quotient $^{CA}/_{\sim_{Br}}$ as Br(K).

Lemma 4.1.6. $(\bullet \otimes_K \bullet) : CSA \times CSA \to CSA$ descends to a function on Br(K).

Proof. We need to prove that for all $A, B, C, D \in CSA$ such that $A \sim_{Br} B$ and $C \sim_{Br} D$, $A \otimes_R C \sim_{Br} B \otimes_R D$ as well. Suppose $Mat_m(A) \cong Mat_n(B)$ as K-algebras and $Mat_p(C) \cong Mat_q(D)$, by construction 3.1.4, we have

$$\begin{split} \operatorname{Mat}_{\operatorname{\mathfrak{mp}}} (A \otimes_R C) &\cong \operatorname{Mat}_{\operatorname{\mathfrak{m}}}(A) \otimes_R \operatorname{Mat}_{\operatorname{\mathfrak{p}}}(C) \\ &\cong \operatorname{Mat}_{\operatorname{\mathfrak{n}}}(B) \otimes_R \operatorname{Mat}_{\operatorname{\mathfrak{q}}}(D) \\ &\cong \operatorname{Mat}_{\operatorname{\mathfrak{n}}}_{\operatorname{\mathfrak{q}}}(B \otimes_R D) \,. \end{split}$$

Construction 4.1.2 (Brauer Group). Br(K) forms a group under $[A]_{\sim_{Br}} \cdot [B]_{\sim_{Br}} = [A \otimes_{K} B]_{\sim_{Br}}$ with neutral element $[K]_{\sim_{Br}}$ where $A, B \in CSA$ and $[A]_{\sim_{Br}}^{-1} = [A^{opp}]_{\sim_{Br}}$. We need to prove the following properties:

- 1. associativity: for all A, B, C \in CSA, $[A]_{\sim_{Br}} \cdot ([B]_{\sim_{Br}} \cdot [C]_{\sim_{Br}}) = ([A]_{\sim_{Br}} \cdot [B]_{\sim_{Br}}) \cdot [C]_{\sim_{Br}}$ because $A \otimes_R (B \otimes_R C) \cong (A \otimes_R B) \otimes_R C$ as K-algebras.
- 2. neutral element: for all $A \in CSA$, $[K]_{\sim_{Br}} \cdot [A]_{\sim_{Br}} = [A]_{\sim_{Br}} = [A]_{\sim_{Br}} \cdot [K]_{\sim_{Br}}$. Since $[K]_{\sim_{Br}} \cdot [A]_{\sim_{Br}} = [K \otimes_{K} A]_{\sim_{Br}}$, in construction 3.1.4, we see that $Mat_n(A) \cong A \otimes_{K} Mat_n(K)$, by lemma 4.1.6, $A \otimes_{K} Mat_n(K)$ is Brauer equivalent to $A \otimes_{K} K$ since $K \sim_{Br} Mat_n(K)$.
- 3. cancellation: for all $A \in CSA$, we need $[A]_{\sim_{Br}} \cdot [A^{opp}]_{\sim_{Br}}$, that is we want $A \otimes_{K} A^{opp} \sim_{Br} K$. By construction 3.1.1, we have $A \otimes_{K} A^{opp} \cong \operatorname{End}_{K} A$ which is isomorphic to $\operatorname{Mat}_{\dim_{K} A}(K)$ as K-algebras.

Theorem 4.1.7. If K is algebraically closed, Br(K) is trivial; in particular $Br_n(\mathbb{C})$ is trivial.

Proof. We need to show that every $A \in CSA$ is isomorphic to $Mat_n(K)$ for some K when K is algebraically closed. Indeed, by theorem 3.2.6, $A \cong Mat_n(D)$ for some division algebra D and $n \in \mathbb{N}_{\geq 0}$. Since K is algebraically closed and D is an integral domain and finite dimensional, the structure morphism $\rho: K \to D$ is a isomorphism; therefore $A \cong Mat_n(K)$.

Lemma 4.1.8. Let $A, B \in CSA_K$. There exists a division K-algebra D and non-zero $\mathfrak{m}, \mathfrak{n} \in \mathbb{N}$ such that $A \cong Mat_{\mathfrak{m}}(D)$ and $B \cong Mat_{\mathfrak{n}}(D)$ as K-algebras.

Proof. By theorem 3.2.6, we can find division algebras S_A , S_B and non-zero $\mathfrak{m}, \mathfrak{n} \in \mathbb{N}$ such that $A \cong \operatorname{Mat}_{\mathfrak{n}}(S_A)$ and $B \cong \operatorname{Mat}_{\mathfrak{m}}(S_B)$ as K-algebras. Hence $B \sim_{\operatorname{Br}} A \sim_{\operatorname{Br}} \operatorname{Mat}_{\mathfrak{n}}(S_A) \sim_{\operatorname{Br}} S_A$, in another word, for some non-zero $\mathfrak{a}, \mathfrak{a}' \in \mathbb{N}$, we have $\operatorname{Mat}_{\mathfrak{a}}(B) \cong \operatorname{Mat}_{\mathfrak{a}'}(S_A)$ as K-algebras. Hence, by theorem 3.2.7, we have that $S_A \cong S_B$ as K-algebras and the lemma is proved.

4.2 Base Change

In this section let E/K be a field extension. We have seen in corollary 1.1.11 that if $A \in CSA_K$ then $E \otimes_K A \in CSA_E$; therefore we have a set-theoretic function $CSA_K \to CSA_E$. In this section we prove that this descends to a group homomorphism $Br(K) \to Br(E)$. For brevity, if $A \in CSA_K$, we denote $E \otimes_K A$ as A_E when this causes no confusion. Construction 4.2.1. We will construct a series of isomorphisms (either over K or E) to arrive at the conclusion that $A \sim_{Br_{K}} B$ implies $A_{E} \sim_{Br_{E}} B_{E}$. Assume $m, n \in \mathbb{N}_{\geq 0}$ are such that $\operatorname{Mat}_{m}(A) \cong \operatorname{Mat}_{n}(B)$ are K-algebras. Then we do the following calculation: as E-algebras

$\operatorname{Mat}_{\mathfrak{m}}(A_{E})\cong A_{E}\otimes_{E}\operatorname{Mat}_{\mathfrak{m}}(E)$	see construction $3.1.4$
$\cong A_E \otimes_E (E \otimes_K \operatorname{Mat}_{\mathfrak{m}}(K))$	see †
$\cong E \otimes_K (A \otimes_K \operatorname{Mat}_{\mathfrak{m}}(K))$	see ‡
$\cong E \otimes_K \operatorname{Mat}_{\mathfrak{m}}(A)$	see construction 3.1.4 and \ddagger
$\operatorname{Mat}_n(B_E)\cong E\otimes_K\operatorname{Mat}_n(B)$	same as the case of ${\sf A}$
$\operatorname{Mat}_{\mathfrak{m}}(A_{E}) \cong \operatorname{Mat}_{\mathfrak{n}}(B_{E})$	see \ddagger

†: Wee need to check $\operatorname{Mat}_{\mathfrak{m}}(\mathsf{E}) \cong \mathsf{E} \otimes_{\mathsf{K}} \operatorname{Mat}_{\mathfrak{m}} \mathsf{K}$ as E-algebras since construction 3.1.4 only gives a K-algebra isomorphism. If $e \in \mathsf{E}$, then its image in $\mathsf{E} \otimes_{\mathsf{K}} \operatorname{Mat}_{\mathfrak{m}}(\mathsf{K})$ is $e \otimes 1$ and its image in $\operatorname{Mat}_{\mathfrak{m}}(\mathsf{E})$ is diag(e) which under the K-algebra isomorphism is mapped to $\sum_{ij} \operatorname{diag}(e)_{ij} \cdot \delta_{ij} = e \otimes 1$. ‡: This is defined by combining two E-algebra homomorphisms

$$A_E \to A_E \otimes_K \operatorname{Mat}_m(K) \to E \otimes_K (A \otimes_K \operatorname{Mat}_m(K))$$

and

$$\mathsf{E} \otimes_{\mathsf{K}} \operatorname{Mat}_{\mathfrak{m}}(\mathsf{K}) \to (\mathsf{E} \otimes_{\mathsf{K}} \operatorname{Mat}_{\mathfrak{m}}(\mathsf{K})) \otimes_{\mathsf{K}} \mathsf{A} \to \mathsf{E} \otimes_{\mathsf{K}} (\mathsf{A} \otimes_{\mathsf{K}} \operatorname{Mat}_{\mathfrak{m}}(\mathsf{K}))$$

Since $(E \otimes_K A) \otimes_E (E \otimes_K \operatorname{Mat}_m(K))$ is a simple ring, this morphism is automatically injective. It is surjective as well: let $x \in E \otimes_K (A \otimes_K \operatorname{Mat}_m(K))$, without loss of generality, assume $x = e \otimes (a \otimes \delta_{ij})$ for some $e \in E$, $a \in A$. Then precisely $(e \otimes a) \otimes (1 \otimes \delta_{ij})$ is mapped to x. \ddagger : a K-algebra isomorphism $A \cong B$ gives an E-algebra isomorphism $E \otimes_K A \cong E \otimes_K B$.

Thus we have a well defined function $\operatorname{Br}(K) \to \operatorname{Br}(E)$. We now check that this is a group homomorphism. $[K]_{\sim_{\operatorname{Br}_K}}$ is mapped to $[E \otimes_K K]_{\sim_{\operatorname{Br}_E}}$ but $E \otimes_K K \cong E$ as E-algebra. For $A, B \in CSA_K$, we have that $[AB]_{\sim_{\operatorname{Br}_K}}$ is mapped to $(A \otimes_K B)_E \cong A_E \otimes_E B_E$ as E-algebras; hence $[AB]_{\sim_{\operatorname{Br}_K}}$ and $[A]_{\sim_{\operatorname{Br}_K}} \cdot [B]_{\sim_{\operatorname{Br}_K}}$ have the same image under base change.

Denote the base change morphism in construction 4.2.1 as Br_{κ}^{E} .

Lemma 4.2.1. Br_{K}^{K} is identity.

Proof. If $A \in CSA$, then $A \sim_{\operatorname{Br}} K \otimes_K A$.

Lemma 4.2.2. Consider the tower of field extension E/F/K,

$$\operatorname{Br}_{\mathsf{K}}^{\mathsf{E}} = \operatorname{Br}_{\mathsf{F}}^{\mathsf{F}} \circ \operatorname{Br}_{\mathsf{K}}^{\mathsf{E}}$$
.

Proof. If $A \in CSA_K$, then $E \otimes_F (F \otimes_K A)$ is isomorphic to $E \otimes_F A$ as E-algebras.

Corollary 4.2.3. Br forms a functor from category of field to category of abelian groups.

Proof. This is the categorical version of lemma 4.2.1 and lemma 4.2.2.

Definition 4.2.2 (Relative Brauer Group). Let E/K be a field extension, we define the relative Brauer group Br(E/K) to be the kernel of the base change morphism Br_K^E .

Remark 4.2.4. Unpacking the definition of the relative Brauer group, we see that for any $A \in CSA_K$, if $E \otimes_K A \cong Mat_n(E)$ as E-algebras, then $Br_K^E([A]_{\sim_{Br}}) = 1$.

Definition 4.2.3 (Splitting Field). For any field extension E/K and any K-algebra A, we say E is a splitting field of A if and only if $E \otimes_K A \cong Mat_n(E)$ as E-algebras for some non-zero n. We also say E splits A or A is splited by E

Theorem 4.2.5. Let E/K be a field extension and $A \in CSA_K$, E splits A if and only if $[A]_{\sim_{Br}} \in Br(E/K)$.

Proof. The "only if" part is by definition. For the other direction, we know by definition that $\operatorname{Mat}_n(E \otimes_K A) \cong \operatorname{Mat}_m(E)$ as E-algebras for some non-zero $\mathfrak{m}, \mathfrak{n}$. By theorem 3.2.6, we find some division algebra D and non-zero natural number p such that $E \otimes_K A \cong \operatorname{Mat}_p(D)$ as E-algebras. Thus $\operatorname{Mat}_{pm}(E) \cong \operatorname{Mat}_{pn}(E \otimes_K A) \cong \operatorname{Mat}_{p^2n}(D)$ as E-algebras. By theorem 3.2.7, we conclude that $E \cong D$ as E-algebras. Hence $E \otimes_K A \cong \operatorname{Mat}_p(E)$, in another word, E splits A.

Remark 4.2.6. In light of lemma 4.2.2, if K is algebraic closed then K splits any K-algebra A. Indeed, K splits A if and only if $[A]_{\sim Br}$ but $[A]_{\sim Br}$ is equal to 1.

Remark 4.2.7. If two CSA_K are Brauer equivalent, in another word, $A \sim_{Br_K} B$, then E splits A if and only if E splits B. Indeed, if A and B are equivalent, then $[A]_{\sim Br} \in Br(E/K)$ if and only if $[B]_{\sim Br} \in Br(E/K)$.

4.3 Good Representative Lemma

In this section, let K/F be a finite dimensional field extension.

Lemma 4.3.1. Let $A \in CSA_F$ splitted by K. There exists a $B \in CSA_F$ such that

- $[A]_{\sim_{\mathrm{Br}}}[B]_{\sim_{\mathrm{Br}}} = 1$
- there exists F-algebra map $K \hookrightarrow B$
- $(\dim_F K)^2 = \dim_F B.$

Proof. Since K splits A, we find a non-zero natural number n such that $K \otimes_F A \cong \operatorname{Mat}_n K \cong \operatorname{End}_K(K^n)$ as K-algebras. We define an F-algebra map $\iota : A \to \operatorname{End}_F(K^n)$ by

$$A \longrightarrow K \otimes_F A \stackrel{\cong}{\longrightarrow} \operatorname{End}_K \left(K^n \right) \stackrel{|_F}{\longrightarrow} \operatorname{End}_F \left(K^n \right) \,,$$

where $|_F$ is restriction of scalars. Since A is simple, ι is injective, therefore $A \cong \iota(A)$ as F-algebras. Define B as $C_{\operatorname{End}_F(K^n)}(\iota(A))$, the centralizer of the range of ι in $\operatorname{End}_F(K^n)$. We construct an embedding $K \hookrightarrow B$ by $r \mapsto (r \cdot \bullet)$

B is a central F-algebra: if $x \in Z(B)$, then $x \in \iota(A)$ because by theorem 3.4.13, it is sufficient to prove that x is in $C_{\operatorname{End}_{\mathsf{F}}(\mathsf{K}^n)}(B)$ which follows from the fact that $x \in Z(B)$. In fact, $x \in Z(\iota(A))$: suppose $\mathfrak{a} \in A$, we need to check $x \cdot \iota(\mathfrak{a}) = \iota(\mathfrak{a}) \cdot x$, this is the case because B is defined as the centralizer of $\iota(A)$. Since $\iota(A) \cong A$ as F-algebras, $\iota(A)$ is F-central, hence $x \in \mathsf{F}$.

B is a simple ring: by lemma 3.4.10, it is sufficient to prove that $\iota(A)$ is a simple ring which comes from $A \cong \iota(A)$ as F-algebras.

By corollary 3.4.12, we have F-algebra isomorphism $\operatorname{End}_F(K^n) \cong \iota(A) \otimes_F B \cong A \otimes_F B$. Since $\operatorname{End}_F(K^n) \cong \operatorname{Mat}_{\dim_F(K^n)}(F)$ as F-algebras, we see that $[A]_{\sim_{\operatorname{Br}}}$ and $[B]_{\sim_{\operatorname{Br}}}$ are inverses.

By lemma 3.4.11, dim_F B · dim_F t(A) = dim_F B · dim_F A = dim_F End_F (Kⁿ) = (dim_F (Kⁿ))² = (dim_F K · dim_K (Kⁿ))² = n² · (dim_F K)². On the other hand, since K $\otimes_F A \cong \operatorname{Mat}_n K$, we have dim_F K $\otimes_F A = \dim_F K \cdot \dim_F A = \dim_F \operatorname{Mat}_n K = \dim_F K \dim_K \operatorname{Mat}_n K = n² \dim_F K$. Since dim_F K $\neq 0$, we conclude dim_F A = n². Since $n \neq 0$ and dim_F(B) · dim_F(A) = n² dim_F(B) = n²(dim_F K)², we get the desired result.

Corollary 4.3.2. Let $A \in CSA_F$ splitted by K. There exists a $B \in CSA_F$ such that

- $[B]_{\sim_{Br}} = [A]_{\sim_{Br}}$
- there exists an F-algebra map $K \hookrightarrow B$
- $(\dim_F K)^2 = \dim_F B.$

Proof. Let B and $\iota: K \hookrightarrow B$ be as in lemma 4.3.1. Consider B^{opp} and $K \hookrightarrow B \to B^{opp}$. This works.

Theorem 4.3.3. Let $A \in CSA_F$. K splits A if and only if there exists a $B \in CSA_F$ such that

- $[B]_{\sim_{\operatorname{Br}}} = [A]_{\sim_{\operatorname{Br}}}$
- there exists an F-algebra map $K \hookrightarrow B$
- $(\dim_F K)^2 = \dim_F B.$

Proof. The "if" direction is corollary 4.3.2. For the "only if" direction, let $B \in CSA_F$ and $\iota : K \hookrightarrow B$ be given. We give B a K-module structure by right multiplication, that is for any $a \in K$ and $b \in B$, we define $a \cdot b := b \cdot \iota(a)$. Since B is a finite dimensional F-vector space and K/F is a finite dimensional field extension, B is a finite dimensional K-vector space as well. Since $[B]_{\sim Br} = [A]_{\sim Br}$, it is sufficient to show that K splits B. We define an F-bilinear map $\mu : K \to B \to End_K B$ by $(c, a) \mapsto (c \cdot a \cdot \bullet)$ which induce an F-linear map $\mu' : K \otimes_F B \to End_K B$. Since for any $r, c \in K$ and $a \in B$, we have $\mu'(r \cdot c \otimes a)(a') = aa'\iota(rc) = aa'\iota(c)\iota(r) = r \cdot \mu'(c \otimes a)$, that is μ' is K-linear as well. Note that

 $\mu'(1)=\mu'(1\otimes 1)=(1\cdot 1\cdot \bullet)=1$

and that

$$\begin{split} \mu'(c\otimes a\cdot c'\otimes a')(a'') &= \mu'(cc'\otimes aa')(a'') \\ &= cc'\cdot aa'\cdot a'' \\ &= aa'a''\iota(cc') \\ &= a(a'a''\iota(c'))\iota(c) \\ &= \mu'(c\otimes a)(a'a''\iota(c')) \\ &= \mu'(c\otimes a)(\mu'(c'\otimes a')(a'')) \\ &= (\mu'(c\otimes a)\circ \mu'(c'\otimes a'))(a'') \end{split}$$

that is, μ' is an K-algebra map.

If we can show that μ' is a bijection, we will prove the result for $K \otimes_F B \cong \operatorname{End}_K B \cong \operatorname{Mat}_{\dim_K B} K$ as K-algebras. By corollary 1.1.8, it is sufficient to show $\dim_K K \otimes_F B = \dim_K \operatorname{End}_K B$.

Let n denote $\dim_F K$. Since, $\dim_F K \dim_K K \otimes_F B = \dim_F K \otimes_F B = \dim_F K \dim_F B$. we have $\dim_K K \otimes_F B = \dim_F B = (\dim_F K)^2$. On the other hand, since $(\dim_F K)^2 = \dim_F B = \dim_F K \dim_K B$, we have $\dim_K B = \dim_F K$; thus $\dim_K \operatorname{End}_K B = (\dim_K B)^2 = (\dim_F K)^2$ and the result is proved.

In light of theorem 4.3.3, we isolate the following useful definition:

Definition 4.3.1 (Good Representation). For any $X \in Br(F)$, a K-good representation of X is an $A \in CSA_F$ and an F-algebra map $K \hookrightarrow A$ such that $[A]_{\sim_{Br}} = X$ and $\dim_F A = (\dim_F K)^2$. We often denote the F-algebra map $K \hookrightarrow A$ as ι or ι_A .

When K is clear from context, we will simply say good representation instead of $K\operatorname{-good}$ representation

Corollary 4.3.4. For any $X \in Br(F)$, $X \in Br(K/F)$ if and only if X admits a good representation.

Proof. Rephrase of theorem 4.3.3 and theorem 4.2.5.

4.3.1 Basic Properties

We observe the following easy result about good representations. Let $X \in Br(F)$ and A be a good representation of X.

Lemma 4.3.5. The range $\iota_A(A)$ is a simple ring.

Proof. Because K is a simple ring, ι_A is injective therefore $\iota_A(A) \cong K$.

Lemma 4.3.6. $C_A(\iota_A(A)) = \iota_A(A)$.

Proof. In the language of section 1.2, $\iota_A(A)$ is a subfield of A, hence by lemma 1.2.3, we only need to show $\dim_F A = (\dim_F \iota_A(A))^2$. But $\dim_F A = (\dim_F K)^2$ and $\iota(A) \cong K$.

Construction 4.3.2. We give A a K-module structure by left multiplication, that is for any $c \in K$ and $a \in A$, we define $c \cdot a$ to be $\iota_A(c)a$. Note that if $c \in F$ then $\iota_A(c)a = c \cdot a$, in another word, the K-action and the F-action on A are compatible. Then A is a finite dimensional K-vector space and $\dim_K A = \dim_F K$: indeed $\dim_F K \cdot \dim_K A = \dim_F K \cdot \dim_F K = \dim_F A$.

Lemma 4.3.7. If A and B are two good representations of X, then $A \cong B$ as F-algebras.

Proof. By lemma 4.1.8, we find a division F-algebra D and non-zero natural numbers $\mathfrak{m}, \mathfrak{n}$ such that $A \cong \operatorname{Mat}_{\mathfrak{m}}(D)$ and $B \cong \operatorname{Mat}_{\mathfrak{n}}(D)$ as F-algebras. Therefore

$$(\dim_F K)^2 = \dim_F A = \mathfrak{m}^2 \dim_F D$$
$$= \dim_F B = \mathfrak{n}^2 \dim_F D.$$

Therefore $\mathfrak{m} = \mathfrak{n}$ and $A \cong \operatorname{Mat}_{\mathfrak{m}} D = \operatorname{Mat}_{\mathfrak{n}} D \cong B$.

4.3.2 Conjugation Factors and Conjugation Sequences

In this section, let K/F be a field extension, $X \in Br(F)$ and A be a K-good representation of X.

Remark 4.3.8. Since $\operatorname{Gal}(K/F)$ acts on K^* , for $x \in K^*$, we feel free to write $\sigma \cdot x$ when it feels more readable than $\sigma(x)$, for example when there are nested brackets.

Definition 4.3.3 (Conjugation Factor). With respect to A, a conjugation factor of σ is a unit $x_{\sigma} \in A^*$ such that for all $c \in K$,

$$\mathbf{x}_{\sigma}\mathbf{\iota}_{A}(\mathbf{c})\mathbf{x}_{\sigma}^{-1} = \mathbf{\iota}_{A}(\sigma \cdot \mathbf{c}).$$

A conjugation sequence is a sequence $x : \operatorname{Gal}(K/F) \to A^*$ such that for all $\sigma \in \operatorname{Gal}(K/F)$, x_{σ} is a conjugation factor of σ . When we want to stress A, we say A-conjugation factor and A-conjugation sequence.

Remark 4.3.9. When x_{σ} is a conjugation factor of σ , the equalities $x_{\sigma}\iota_{A}(c) = x_{\sigma}\iota_{A}(\sigma(c))$ and $\iota_{A}(c)x_{\sigma}^{-1} = x_{\sigma}^{-1}\iota_{A}(\sigma(c))$ are also useful.

Construction 4.3.4. A has a conjugation sequence: let $\sigma \in \operatorname{Gal}(K/F)$, we have two F-algebra homomorphisms $K \to A$ given by ι_A and $\iota_A \circ \sigma$. Applying theorem 3.3.4 to ι_A and $\iota_A \circ \sigma$ gives us the desired conjugation factor.

Construction 4.3.5. If x is a conjugation factor of σ and y of τ , then xy is a conjugation factor of $\sigma\tau$. For any $c \in K$

$$\chi_{\mathcal{A}}(\sigma \cdot \tau(c)) = \chi \iota_{\mathcal{A}}(\tau \cdot c) \chi^{-1} = \chi y \iota_{\mathcal{A}}(c) y^{-1} \chi^{-1} = (\chi y) \iota_{\mathcal{A}}(\chi y)^{-1}.$$

Theorem 4.3.10. If x is an A-conjugation sequence, then $\{x_{\sigma}|\sigma \in \operatorname{Gal}(K/F)\}$ is an K-linearly independent set. When K/F is finite dimensional and Galois, $\{x_{\sigma}|\sigma \in \operatorname{Gal}(K/F)\}$ is a K-basis for A.

Proof. Suppose $\{x_{\sigma}\}$ is linearly dependent. Let $J \subseteq \operatorname{Gal}(K/F)$ be such that $\{x_{\sigma}|\sigma \in J\}$ is a maximally linearly independent subset. Then $J \neq \operatorname{Gal}(K/F)$, let $\sigma \in \operatorname{Gal}(K/F)$ be an arbitrary automorphism that is not in J. Since $\{x_{\tau}|\tau \in J\}$ is maximally linearly independent, $x_{\sigma} \in \langle x_{\tau}|\tau \in J \rangle$. Hence, by construction 4.3.2 we have

$$x_{\sigma} = \sum_{\tau \in J'} \lambda_{\tau} \cdot x_{\tau} = \sum_{\tau \in J'} \iota_{A} \left(\lambda_{\tau} \right) x_{\tau},$$

for some non-zero $\lambda_{\tau} \in K$ and $J' \subseteq J$. For each $c \in K$, we have the following equality

$$\begin{split} \iota_{A} \left(\sigma \cdot c \right) x_{\sigma} &= x_{\sigma} \iota_{A}(c) & \text{by definition 4.3.3} \\ &= \sum_{\tau \in J'} \lambda_{\tau} \cdot x_{\tau} \iota_{A}(c) \\ &= \sum_{\tau \in J'} \lambda_{\tau} \cdot \iota_{A} \left(\tau \cdot c \right) x_{\tau} & \text{by definition 4.3.3 again} \\ &= \sum_{\tau \in J'} \iota_{A} \left(\lambda_{\tau} \tau(c) \right) x_{\tau}; \\ \iota_{A} \left(\sigma \cdot c \right) x_{\sigma} &= \sum_{\tau \in J'} \iota_{A} \left(\lambda_{\tau} \right) x_{\tau} \iota_{A}(c) \\ &= \sum_{\tau \in J'} \iota_{A} \left(\sigma(c) \lambda_{\tau} \right) x_{\tau}. \end{split}$$

Since $\{x_{\tau} | \tau \in J'\}$ is linearly independent, we have that for each $\tau \in J'$, $\lambda_{\tau}\tau(c) = \sigma(c)\lambda_{\tau} = \lambda_{\tau}\sigma(c)$. Note that J' is not empty, for otherwise $x_{\sigma} = \sum_{\tau \in \emptyset} \lambda_{\tau} \cdot x_{\tau} = 0$ but x_{σ} is invertible. Since for any $\tau \in J'$, λ_{τ} is not zero, we have that for all $c \in K$, $\sigma(c) = \tau(c)$, i.e. $\sigma = \tau$. Hence σ is in $J' \subseteq J$ after all; contradiction.

If K/F is finite dimensional and Galois, then dim_F K is equal to the cardinality of Gal(K/F), then by the linear independence of $\{x_{\sigma} | \sigma \in \text{Gal}(K/F)\}$, we conclude that it is indeed a K-basis for A.

4.4 The Second Galois Cohomology

In this section, we construct a group isomorphism between $\operatorname{Br}(K/F) \cong \operatorname{H}^2(\operatorname{Gal}(K/F), K^*)$ where K/F is a finite dimensional Galois extension. To keep alignment of the Brauer group, let us use the multiplicative notation for group cohomology. Recall:

Definition 4.4.1 (the Second Group Cohomology). Let G be a group and M an abelian group (written multiplicatively) with a G-action.

A function $f:G\times G\to M$ is a 2-cocycle if for all $g,h,j\in G,$

$$f(gh, j)f(g, h) = (g \cdot f(h, j)) f(g, hj).$$

We denote the subgroup of 2-cocycles as $\mathcal{Z}^2(G, M)$.

A function $f:G\times G\to M$ is a 2-coboundary if there exists an $x:G\to M$ such that for all $g,h\in G$

$$\frac{g \cdot x(h)}{x(gh)}x(g) = f(g,h)$$

We denote the subgroup of 2-coboundaries as $\mathcal{B}^2(G, M)$.

The second group cohomology $H^2(G, M)$ is defined to be the quotient group of 2-cocycles modulo 2-coboundaries ${}^{\mathcal{Z}^2(G,M)}/{}_{\mathcal{B}^2(G,M)}$. If $s, t \in \mathcal{Z}^2(G,M)$, we say s and t are cohomologous if their equivalence class $[s], [t] \in H^2(G, M)$ are the same; in another word $st^{-1} \in \mathcal{B}^2(G, M)$.

Lemma 4.4.1. If $f \in B^2(G, M)$ is a 2-cocycle and $x \in G$, we have

$$f(1, x) = f(1, 1)$$

$$f(x, 1) = x \cdot f(1, 1).$$

Proof. Indeed:

and

$$f(1 \cdot 1, x)f(1, 1) = (1 \cdot f(1, x))f(1, 1 \cdot x)$$

$$f(1, x)f(1, 1) = f(1, x)f(1, x)$$

$$f(1, x) = f(1, 1)$$

$$f(x \cdot 1, 1)f(x, 1) = (x \cdot f(1, 1))f(x, 1 \cdot 1)$$

$$f(x, 1)f(x, 1) = (x \cdot f(1, 1))f(x, 1)$$

$$f(x, 1) = x \cdot f(1, 1).$$

In the following sections of this chapter, we assume that $X \in Br(F)$ and A is a good representation of X. We use ρ, σ, τ to denote elements of Gal(K/F). To improve typographic aesthetics of our proofs, we sometimes use subscript to mean function application.

4.4.1 From Br(K/F) to $H^2(Gal(K/F), K^*)$

Lemma 4.4.2 (Twisting Conjugation Factors). If x and y are two conjugation factors of σ , then there exists a unique $c \in K$ such that $x = y\iota_A(c)$.

Proof. The uniqueness is clear: suppose $\mathbf{x} = \mathbf{y}\iota_A(\mathbf{c}) = \mathbf{y}\iota_A(\mathbf{c}')$, then $\mathbf{c} = \mathbf{c}'$ because \mathbf{x}, \mathbf{y} are units and ι_A is injective. We first observe that $\mathbf{y}^{-1}\mathbf{x} \in C_A(\iota(A))$: for any $z \in K$, $\mathbf{y}^{-1}\mathbf{x}\iota_A(z) = \mathbf{y}^{-1}\iota_A(\sigma(z))\mathbf{x} = \iota_A(z)\mathbf{y}^{-1}\mathbf{x}$ (by remark 4.3.9). By lemma 4.3.6, $\mathbf{y}^{-1}\mathbf{x} \in \iota(A)$, that is for some $z \in K$, we have that $\mathbf{y}^{-1}\mathbf{x} = \iota_A(z)$ and the claim is proved.

We denote such c by twist^{σ}(x, y) or twist^{σ}_{x,y}, when σ is clear from context, we often omit the superscript. With this notation, $x = y\iota_A(\text{twist}_{x,y})$.

Remark 4.4.3. twist(x, x) is equal to 1 by uniqueness.

Remark 4.4.4. In fact, twist(x, y) is in K^* and $twist(x, y)^{-1} = twist(y, x)$.

Lemma 4.4.5. If x and y are conjugation factors for σ , $x = \iota_A(\sigma(\text{twist}_{x,y}))y$.

Proof.

$$\begin{split} & x = \chi \iota_A \left(\operatorname{twist}_{x,y} \right) \chi^{-1} \chi \iota_A (\operatorname{twist}_{y,x}) \\ & = \iota_A \left(\sigma \cdot \operatorname{twist}_{x,y} \right) \chi \iota_A \left(\operatorname{twist}_{y,x} \right) \ . \\ & = \iota_A \left(\sigma \cdot \operatorname{twist}_{x,y} \right) y \end{split}$$

Construction 4.4.2 (Comparing Conjugation Factors). Let x be a conjugation factor for σ , y for τ and z for $\sigma\tau$. Since xy is a also a conjugation factor, we define the comparison coefficient to be $\operatorname{comp}_{x,y,z}^{\sigma,\tau} := \sigma(\tau(\operatorname{twist}_{xy,z}))$. We often omit superscript when the context is clear. Note that $\operatorname{comp}_{x,y,z}$ is a unit in K with inverse $\sigma(\tau(\operatorname{twist}_{z,xy}))$. By lemma 4.4.2 and lemma 4.4.5, we have the following useful equalities

$$\begin{split} xy &= \iota_A \left(\operatorname{comp}_{x,y,z} \right) z \\ \iota_A \left(\operatorname{comp}_{x,y,z}^{-1} \right) xy &= z \\ \iota_A \left(\operatorname{comp}_{x,y,z} \right) &= xyz^{-1} \\ \iota_A \left(\operatorname{comp}_{x,y,z}^{-1} \right) &= zy^{-1}x^{-1} \\ \dots &= \dots \end{split}$$

Lemma 4.4.6. Let $x : \operatorname{Gal}(K/F) \to A^*$ be a conjugation sequence. We have

$$\operatorname{comp}_{x_{\rho}, x_{\sigma}, x_{\rho\sigma}} \operatorname{comp}_{x_{\rho\sigma}, x_{\tau}, x_{\rho\sigma\tau}} = \rho \left(\operatorname{comp}_{x_{\sigma}, x_{\tau}, x_{\sigma\tau}} \right) \operatorname{comp}_{x_{\rho}, x_{\sigma\tau}, x_{\rho\sigma\tau}}$$

Proof. It is sufficient to make the following calculations:

$$x_{\rho} x_{\sigma} x_{\tau} = \iota_{\mathcal{A}} \left(\operatorname{comp}_{x_{\rho}, x_{\sigma}, x_{\rho\sigma}} \right) \iota_{\mathcal{A}} \left(\operatorname{comp}_{x_{\rho\sigma}, x_{\tau}, x_{\rho\sigma\tau}} \right) x_{\rho\sigma\tau}$$
(4.1)

$$\mathbf{x}_{\rho} \left(\mathbf{x}_{\sigma} \mathbf{x}_{\tau} \right) = \iota_{\mathcal{A}} \left(\rho \cdot \operatorname{comp}_{\mathbf{x}_{\sigma}, \mathbf{x}_{\tau}, \mathbf{x}_{\sigma\tau}} \right) \iota_{\mathcal{A}} \left(\operatorname{comp}_{\mathbf{x}_{\rho}, \mathbf{x}_{\sigma\tau}, \mathbf{x}_{\rho\sigma\tau}} \right) \mathbf{x}_{\rho\sigma\tau}$$
(4.2)

Then since $x_{\rho\sigma\tau}$ is invertible and ι_A is injective, we proved the desired result.

Equation (4.1) is because: by the first equality in construction 4.4.2 (twice)

$$x_{\rho}x_{\sigma}x_{\tau} = \iota_{A}\left(\operatorname{comp}_{x_{\rho}, x_{\sigma}, x_{\rho\sigma}}\right)x_{\rho\sigma}x_{\tau} = \iota_{A}\left(\operatorname{comp}_{x_{\rho}, x_{\sigma}, x_{\rho\sigma}}\right)\iota_{A}\left(\operatorname{comp}_{x_{\rho\sigma}, x_{\tau}, x_{\rho\sigma\tau}}\right)x_{\rho\sigma\tau}.$$

Equation (4.2) is because: by definition 4.3.3, we have

$$\iota_{\mathsf{A}}\left(\rho\cdot\operatorname{comp}_{\mathsf{x}_{\sigma},\mathsf{x}_{\tau},\mathsf{x}_{\sigma\tau}}\right)\mathsf{x}_{\rho}=\mathsf{x}_{\rho}\iota_{\mathsf{A}}\left(\operatorname{comp}_{\mathsf{x}_{\sigma},\mathsf{x}_{\tau},\mathsf{x}_{\sigma\tau}}\right),$$

therefore by construction 4.2.1

$$\begin{split} x_{\rho} \left(x_{\sigma} x_{\tau} \right) &= x_{\rho} \iota_{A} \left(\operatorname{comp}_{x_{\sigma}, x_{\tau}, x_{\sigma\tau}} \right) x_{\sigma\tau} \\ &= \iota_{A} \left(\rho \cdot \operatorname{comp}_{x_{\sigma}, x_{\tau}, x_{\sigma\tau}} \right) x_{\rho} x_{\sigma\tau} \\ &= \iota_{A} \left(\rho \cdot \operatorname{comp}_{x_{\sigma}, x_{\tau}, x_{\sigma\tau}} \right) \iota_{A} \left(\operatorname{comp}_{x_{\rho}, x_{\sigma\tau}, x_{\rho\sigma\tau}} \right) x_{\rho\sigma\tau} \end{split}$$

Construction 4.4.3 (from good representation to 2-cocycle). Let x be an A-conjugation sequence. We associate with x a function $\mathcal{B}^2(x)$: $\operatorname{Gal}(K/F) \times \operatorname{Gal}(K/F) \to K^*$ defined by

$$(\sigma, \tau) \mapsto \operatorname{comp}_{\mathbf{x}_{\sigma}, \mathbf{x}_{\tau}, \mathbf{x}_{\sigma\tau}}$$

We will write $\mathcal{B}^2(\mathbf{x})$ as $\mathcal{B}^2_{A,\mathbf{x}}$, $\mathcal{B}^2_A(\mathbf{x})$ or $\mathcal{B}^2_{\mathbf{x}}$ as well.

Lemma 4.4.7. For any A-conjugation sequence $x, \mathcal{B}_x^2 \in \mathcal{B}^2(\text{Gal}(K/F), K^*)$, that is \mathcal{B}_x is indeed a 2-cocycle.

Proof. We need to prove

$$\mathcal{B}_{\mathbf{x}}(\rho\sigma,\tau) \mathcal{B}_{\mathbf{x}}(\rho,\sigma) = \rho \left(\mathcal{B}_{\mathbf{x}}(\sigma,\tau) \right) \mathcal{B}_{\mathbf{x}}(\rho,\sigma\tau).$$

But this is exactly lemma 4.4.6.

For any good representation A of $X \in Br(K/F)$ and any A-conjugation sequence x, we have constructed a 2-cocycle $\mathcal{B}^2_A(x)$. But to obtain a well-defined function from Br(K/F) to $H^2(Gal(K/F), K^*)$, we need to verify that for any other good representation B of X and B-conjugation sequence y, $\mathcal{B}^2_A(x)$ and $\mathcal{B}^2_B(y)$ are cohomologous. Let us fix another good representation B of X $\in Br(K/F)$ and a B-conjugation sequence y.

Construction 4.4.4. By lemma 4.3.7, A and B are isomorphic as F-algebras, we use $e_{A,B}$ to denote an arbitrary F-algebra isomorphism between A and B. When there is no confusion, we write einstead of $e_{A,B}$ Since $e \circ \iota_A$ and ι_B are two F-algebra homomorphism from K to B, by theorem 3.3.4, there exists some $u \in B^*$ such that for all $r \in K$, we have $\iota_B(r) = ue(\iota_A(r))u^{-1}$ (or equivalently, $u^{-1}\iota_B(r)u = e(\iota_A(r))$). When there is confusion, we write $u_{A,B}$ instead of u.

Lemma 4.4.8. For any $c \in K$, $\sigma \in \operatorname{Gal}(K/F)$ and A-conjugation factor x of σ , we have

$$\iota_{\mathrm{B}}(\sigma \cdot c) = \mathfrak{u} e(x) \mathfrak{u}^{-1} \iota_{\mathrm{B}}(c) \mathfrak{u} e\left(x^{-1}\right) \mathfrak{u}^{-1}.$$

Proof. From definition 4.3.3, we have $e(\iota_A(\sigma \cdot c)) = e(x\iota_A(c)x^{-1})$. Substituting it in construction 4.4.4, we get

$$\begin{split} \iota_{B}(\sigma \cdot c) &= ue \left(x \iota_{A}(c) x^{-1} \right) u^{-1} \\ &= ue(x) e \left(\iota_{A}(c) \right) e \left(x^{-1} \right) u^{-1} \\ &= ue(x) u^{-1} \iota_{B}(c) ue \left(x^{-1} \right) u^{-1}. \end{split}$$

Construction 4.4.5. If x is an A-conjugation factor for σ , we can obtain a B-conjugation factor for σ by defining $B_{\star}x := ue(x)u^{-1}$ with inverse $ue(x^{-1})u^{-1}$. We use lemma 4.4.8 to check that $B_{\star}x$ is indeed a conjugation factor for σ . If y is a B-conjugation factor for σ , another useful constant is $v := \sigma$ (twist_{y,B_{\star}x}). We have

$$y = \iota_{B} (\nu) B_{\star} x$$

$$\iota_{B} (\nu) = ue (\iota_{A} (\nu)) u^{-1}.$$

$$\nu^{-1} = \sigma (twist_{B_{\star} x, y})$$

We also write $v_{x,y}$ or even $v_{x,y}^{A,B}$ when we stress the importance of good representation A and B and their conjugation factor x and y.

Lemma 4.4.9. Let x be an A-conjugation sequence and y a B-conjugation sequence. We have

$$\operatorname{comp}_{y_{\sigma}, y_{\tau}, y_{\sigma\tau}} v_{x_{\sigma\tau}, y_{\sigma\tau}} = v_{x_{\sigma}, y_{\sigma}} \sigma(v_{x_{\tau}, y_{\tau}}) \operatorname{comp}_{x_{\sigma}, x_{\tau}, x_{\sigma\tau}}$$

Proof. By construction 4.4.2, we have $y_{\sigma}y_{\tau} = \iota_B \left(\operatorname{comp}_{y_{\sigma},y_{\tau},y_{\sigma\tau}} \right) y_{\sigma\tau}$. By repeated application of construction 4.4.5 and construction 4.4.4, we have

$$\begin{split} y_{\sigma\tau} &= u \, e \left(\iota_A \left(v_{x_{\sigma\tau}, y_{\sigma\tau}} \right) x_{\sigma\tau} \right) \, u^{-1} \\ y_{\sigma} y_{\tau} &= u \, e \left(\iota_A \left(v_{x_{\sigma\tau}, y_{\sigma\tau}} \right) x_{\sigma} \iota_A \left(v_{x_{\tau}, y_{\tau}} \right) x_{\tau} \right) \, u^{-1} \\ &= \iota_B \left(\operatorname{comp}_{y_{\sigma}, y_{\tau}, y_{\sigma\tau}} \right) y_{\sigma\tau} \\ &= \iota_B \left(\operatorname{comp}_{y_{\sigma}, y_{\tau}, y_{\sigma\tau}} \right) u \, e \left(\iota_A \left(v_{x_{\sigma\tau}, y_{\sigma\tau}} \right) x_{\sigma\tau} \right) \, u^{-1} \\ &= u \, e \left(\iota_A \left(\operatorname{comp}_{y_{\sigma}, y_{\tau}, y_{\sigma\tau}} \right) \right) \, u^{-1} \, u \, e \left(\iota_A \left(v_{x_{\sigma\tau}, y_{\sigma\tau}} \right) x_{\sigma\tau} \right) \, u^{-1} \\ &= u \, e \left(\iota_A \left(\operatorname{comp}_{y_{\sigma}, y_{\tau}, y_{\sigma\tau}} \right) x_{\sigma\tau} , y_{\sigma\tau} \right) x_{\sigma\tau} \right) \, u^{-1}. \end{split}$$

Hence

$$\iota_{A}\left(\nu_{x_{\sigma},y_{\sigma}}\right)x_{\sigma}\iota_{A}\left(\nu_{x_{\tau},y_{\tau}}\right)x_{\tau}=\iota_{A}\left(\mathrm{comp}_{y_{\sigma},y_{\tau},y_{\sigma\tau}}\nu_{x_{\sigma\tau},y_{\sigma\tau}}\right)x_{\sigma\tau}$$

We also have by definition 4.3.3

$$x_{\sigma}\iota_{A}(v_{x_{\tau},y_{\tau}})x_{\tau} = \iota_{A}(\sigma \cdot v_{x_{\tau}y_{\tau}})x_{\sigma}x_{\tau}.$$

Hence

$$\begin{split} \iota_{\mathcal{A}}\left(\nu_{x_{\sigma},y_{\sigma}}\right) x_{\sigma} \iota_{\mathcal{A}}\left(\nu_{x_{\tau},y_{\tau}}\right) x_{\tau} &= \iota_{\mathcal{A}}\left(\nu_{x_{\sigma},y_{\sigma}}\sigma\left(\nu_{x_{\tau},y_{\tau}}\right)\right) x_{\sigma} x_{\tau} \\ &= \iota_{\mathcal{A}}\left(\nu_{x_{\sigma},y_{\sigma}}\sigma\left(\nu_{x_{\tau},y_{\tau}}\right)\operatorname{comp}_{x_{\sigma},x_{\tau},x_{\sigma\tau}}\right) x_{\sigma\tau} \\ &= \iota_{\mathcal{A}}\left(\operatorname{comp}_{y_{\sigma},y_{\tau},y_{\sigma\tau}}\nu_{x_{\sigma\tau},y_{\sigma\tau}}\right) x_{\sigma\tau}. \end{split}$$

Cancelling $x_{\sigma\tau}$ and by injectivity of ι_A , the result is proved.

Lemma 4.4.10. Let x be an A-conjugation sequence and y a B-conjugation sequence. We have

$$\mathcal{B}^{2}_{\mathrm{B},\mathrm{y}}(\sigma,\tau) v_{\mathrm{x}_{\sigma\tau},\mathrm{y}_{\sigma\tau}} = v_{\mathrm{x}_{\sigma},\mathrm{y}_{\sigma}} \sigma(v_{\mathrm{x}_{\tau},\mathrm{y}_{\tau}}) \mathcal{B}^{2}_{\mathrm{A},\mathrm{y}}(\sigma,\tau).$$

Proof. If we unfold construction 4.4.3, we discover the lemma is saying exactly lemma 4.4.9. \Box

We finally arrive at our main conclusion for this section.

Corollary 4.4.11. Let x be an A-conjugation sequence and y a B-conjugation sequence. $\mathcal{B}^2_{A,x}$ and $\mathcal{B}^2_{B,y}$ are 2-cohomologous.

Proof. By definition 4.4.1, we need to find a function f : $\mathrm{Gal}(K/F) \to K^{\star}$ such that for all $\sigma, \tau \in \mathrm{Gal}(K/F),$

$$\frac{\sigma(f(\tau))}{f(\sigma\tau)}f(\sigma) = \frac{\mathcal{B}_{B,y}^2}{\mathcal{B}_{A,x}^2}.$$

Let $f(\rho) := \nu_{x_{\alpha}, y_{\alpha}}$, by lemma 4.4.10 we see the equality holds.

Construction 4.4.6 (from Br(K/F) to H² (Gal(K/F), K^{*})). Let $X \in Br(K/F)$, by corollary 4.3.4, X admits a good representation A; by construction 4.3.4, A admits a conjugation sequence x. We associate with X an element $H^2(X) := [\mathcal{B}^2_{A,x}]$ in H^2 (Gal(K/F), K^{*}). By corollary 4.4.11, for any other good representation B and B-conjugation sequence y, we have $[\mathcal{B}^2_{A,x}] = [\mathcal{B}^2_{B,y}]$, hence we have a well-defined function H^2 : Br(K/F) \rightarrow H² (Gal(K/F), K^{*}).

4.4.2 Cross Product as a Central Simple Algebra

Let $\mathfrak{a} \in \mathfrak{B}^2(\operatorname{Gal}(K/F), K^*)$ be any 2-cocycle. In this section, we construct the cross product associated with \mathfrak{a} which we prove to be F-central simple. Finally, we show that if $\mathfrak{a}, \mathfrak{b} \in \mathfrak{B}^2(\operatorname{Gal}(K/F), K^*)$ are cohomologous, the cross products associated with \mathfrak{a} and \mathfrak{b} are Brauer equivalent.

Construction 4.4.7 (Cross product). Denote $\mathfrak{C}_{\mathfrak{a}}$ to be $\operatorname{Gal}(\mathsf{K}/\mathsf{F}) \to \mathsf{K}$, i.e. functions from $\operatorname{Gal}(\mathsf{K}/\mathsf{F})$ to K . Notationally, elements of $\mathfrak{C}_{\mathfrak{a}}$ are sequences in K indexed by $\operatorname{Gal}(\mathsf{K}/\mathsf{F})$; we denote $\Delta^{\mathfrak{a}}_{\sigma,c}$ to be the sequence with value c at σ -th index and zero elsewhere. When \mathfrak{a} is clear from context, we will omit the superscript. We give $\mathfrak{C}_{\mathfrak{a}}$ the usual zero, addition, negation, that is, we give $\mathfrak{C}_{\mathfrak{a}}$ the normal additive abelian group structure. Since for each $c \in \mathfrak{C}_{\mathfrak{a}}$,

$$c = \sum_{\sigma \in \operatorname{Gal}(K/F)} \Delta_{\sigma, c(\sigma)},$$

it is often, if not always, sufficient to consider the special cases of $\Delta_{\sigma,c}$ and extend the result linearly. For multiplications, we define the result of multiplying $\Delta_{\sigma,c}, \Delta_{\tau,d} \mathfrak{C}_{\mathfrak{a}}$ to be $\Delta_{\sigma\tau,c\sigma(d)\mathfrak{a}(\sigma,\tau)}$. Immediately, if either c or d is 0, the result of multiplication is also zero. That is, for all $\mathbf{c} \in \mathfrak{C}_{\mathfrak{a}}$, we have $\mathbf{c} \cdot \mathbf{0} = \mathbf{0} \cdot \mathbf{c} = \mathbf{0}$. For any $\mathbf{r} \in \mathbf{F}$ and $\Delta_{\sigma,c} \in \mathfrak{C}_{\mathfrak{a}}$, we define $\mathbf{r} \cdot \Delta_{\sigma,c}$ to be $\Delta_{\sigma,\mathbf{r}\cdot\mathbf{c}}$.

Remark 4.4.12. When K/F is infinite dimensional, the correct definition of $\mathfrak{C}_{\mathfrak{a}}$ is perhaps $\bigoplus_{\sigma \in \operatorname{Gal}(K/F)} K$. But in Lean4, function type is easier to manipulate than direct sums. Since our scope is finite dimensional Galois extension, our definition is still accurate.

Lemma 4.4.13. The cross product $\mathfrak{C}_{\mathfrak{a}}$ is a ring with the multiplicative unit $\Delta_{\mathsf{id},\mathfrak{a}(\mathsf{id},\mathsf{id})^{-1}}$. The F-action on $\mathfrak{C}_{\mathfrak{a}}$ defined by $\mathbf{r} \cdot \Delta_{\sigma,\mathbf{c}} := \Delta_{\sigma,\mathbf{r}\cdot\mathbf{c}}$ makes it an F-algebra.

Proof. We verify the axioms of rings on elements of the form $\Delta_{\sigma,c}$. Let $\sigma, \tau, \rho \in \operatorname{Gal}(K/F)$ and $a, b, c \in K$.

• associativity of multiplication. We need to check that $\Delta_{\sigma,a} (\Delta_{\tau,b} \Delta_{\rho,c}) = (\Delta_{\sigma,a} \Delta_{\tau,b}) \Delta_{\rho,c}$:

$$\begin{split} \Delta_{\sigma,a} \left(\Delta_{\tau,b} \Delta_{\rho,c} \right) &= \Delta_{\sigma,a} \Delta_{\tau\rho,b\tau(c)\mathfrak{a}(\sigma,\tau)} \\ &= \Delta_{\sigma\tau\rho,a\sigma(b)\sigma(\tau(c))\sigma(\mathfrak{a}(\sigma,\tau))}; \\ \left(\Delta_{\sigma,a} \Delta_{\tau,b} \right) \Delta_{\rho,c} &= \Delta_{\sigma\tau,a\sigma(b)\mathfrak{a}(\sigma,\tau)} \Delta_{\rho,c} \\ &= \Delta_{\sigma\tau\rho,a\sigma(b)\mathfrak{a}(\sigma,\tau)\sigma(\tau(c))\mathfrak{a}(\sigma\tau,\rho)}. \end{split}$$

Hence it is sufficient to check

$$\sigma(\tau(c))\sigma(\mathfrak{a}(\sigma,\tau)) = \mathfrak{a}(\sigma,\tau)\sigma(\tau(c))\mathfrak{a}(\sigma\tau,\rho).$$

This is the 2-cocycle condition in definition 4.4.1 (modulo commutativity of K).

• multiplicative unit: we need to check $\Delta_{\sigma,\alpha}\Delta_{id,\mathfrak{a}(id,id)} = \Delta_{id,\mathfrak{a}(id,id)}\Delta_{\sigma,\alpha} = \Delta_{\sigma,\alpha}$. By multiple applications of lemma 4.4.1

$$\begin{split} \Delta_{\mathrm{id},\mathfrak{a}(\mathrm{id},\mathrm{id})^{-1}}\Delta_{\sigma,\mathfrak{a}} &= \Delta_{\sigma,\mathfrak{a}(\mathrm{id},\mathrm{id})^{-1}\,\mathfrak{a}\mathfrak{a}(\mathrm{id},\sigma)} \\ &= \Delta_{\sigma,\mathfrak{a}(\mathrm{id},\mathrm{id})\mathfrak{a}\mathfrak{a}(\mathrm{id},\mathrm{id})} \\ &= \Delta_{\sigma,\mathfrak{a}} \\ \Delta_{\sigma,\mathfrak{a}}\Delta_{\mathrm{id},\mathfrak{a}(\mathrm{id},\mathrm{id})^{-1}} &= \Delta_{\sigma,\mathfrak{a}\sigma(\mathfrak{a}(\mathrm{id},\mathrm{id}))^{-1}\mathfrak{a}(\sigma,\mathrm{id})} \\ &= \Delta_{\sigma,\mathfrak{a}\sigma(\mathfrak{a}(\mathrm{id},\mathrm{id}))^{-1}\sigma(\mathfrak{a}(\mathrm{id},\mathrm{id}))} \\ &= \Delta_{\sigma,\mathfrak{a}} \end{split}$$

- distributivity: We need to check left-distributivity $\Delta_{\sigma,a} (\Delta_{\tau,b} + \Delta_{\rho,c}) = \Delta_{\sigma,a} \Delta_{\tau,b} + \Delta_{\sigma,a} \Delta_{\rho,c}$ and right distributivity $(\Delta_{\tau,b} + \Delta_{\rho,c}) \Delta_{\sigma,a} = \Delta_{\tau,b} \Delta_{\sigma,a} + \Delta_{\rho,c} \Delta_{\sigma,a}$. This is precisely what "extend linearly" means.
- F-algebra: We need to check for all $r \in F$, $(r \cdot \Delta_{id,\mathfrak{a}(id,id)^{-1}}) \Delta_{\sigma,c} = \Delta_{\sigma,c} (r \cdot \Delta_{id,\mathfrak{a}(id,id)^{-1}})$. By lemma 4.4.1

$$\begin{split} \left(r\cdot\Delta_{id,\mathfrak{a}(id,id)^{-1}}\right)\Delta_{\sigma,c} &= \Delta_{id,r\cdot\mathfrak{a}(id,id)^{-1}}\Delta_{\sigma,c} \\ &= \Delta_{\sigma,(r\cdot\mathfrak{a}(id,id)^{-1})c\mathfrak{a}(id,\sigma)} \\ &= \Delta_{\sigma,(r\cdot\mathfrak{a}(id,id)^{-1})c\mathfrak{a}(id,id)} \\ &= \Delta_{\sigma,r\cdot c} \\ \Delta_{\sigma,c}\left(r\cdot\Delta_{id,\mathfrak{a}(id,id)^{-1}}\right) &= \Delta_{\sigma,c}\Delta_{id,r\cdot\mathfrak{a}(id,id)^{-1}} \\ &= \Delta_{\sigma,c\sigma(r\cdot\mathfrak{a}(id,id)^{-1})\mathfrak{a}(\sigma,id)} \\ &= \Delta_{\sigma,c(r\cdot\sigma(\mathfrak{a}(id,id)^{-1})\mathfrak{a}(id,id)^{-1}} \\ &= \Delta_{\sigma,c(r\cdot1)} \\ &= \Delta_{\sigma,r\cdot c}. \end{split}$$

г		

From now on, we feel free to write $1 \in \mathfrak{C}_{\mathfrak{a}}$ instead of $\Delta_{\mathsf{id},\mathfrak{a}(\mathsf{id},\mathsf{id})^{-1}}$. Then the algebra map $F \hookrightarrow \mathfrak{C}_{\mathfrak{a}}$ is the map $r \mapsto r \cdot 1$.

Construction 4.4.8 (K-embedding). The map $\iota_{\mathfrak{C}_{\mathfrak{a}}}: \mathsf{K} \to \mathfrak{C}_{\mathfrak{a}}$ defined by

$$b \mapsto \Delta_{\mathsf{id}, \mathfrak{ba}(\mathsf{id}, \mathsf{id})^{-1}}$$

is an F-algebra map. Checking that $\iota_{\mathfrak{C}_{\mathfrak{a}}}$ preserves 1, multiplication and addition uses nothing but axioms of ring. For any $r \in F$, we need to check $\iota_{\mathfrak{C}_{\mathfrak{a}}}(r) = r \cdot 1$. Indeed $\iota_{\mathfrak{C}_{\mathfrak{a}}}(r) = \Delta_{\mathrm{id},r \cdot \mathfrak{a}(\mathrm{id},\mathrm{id})^{-1}}$ and $r \cdot 1 = r \cdot \Delta_{\mathrm{id},\mathfrak{a}(\mathrm{id},\mathrm{id})^{-1}} = \Delta_{\mathrm{id},r \cdot \mathfrak{a}(\mathrm{id},\mathrm{id})^{-1}}$. When the context is clear, we also write $\iota_{\mathfrak{a}}$ instead of $\iota_{\mathfrak{C}_{\mathfrak{a}}}$. We give $\mathfrak{C}_{\mathfrak{a}}$ a K-module structure by left-multiplication, that is for any $b \in K$ and $c \in \mathfrak{C}_{\mathfrak{a}}$, we define $b \cdot c := \iota_{\mathfrak{a}}(b)c$.

We note the following useful equality: for any $b\in K$

$$b \cdot \Delta_{\sigma,c} = \iota_{\mathfrak{a}}(b) \Delta_{\sigma,c} = \Delta_{\sigma,bc},$$

indeed: $\iota_{\mathfrak{a}}(\mathfrak{b})\Delta_{\sigma,c} = \Delta_{id,\mathfrak{ba}(id,id)^{-1}}\Delta_{\sigma,c} = \Delta_{\sigma,\mathfrak{ba}(id,id)^{-1}\mathfrak{ca}(id,\sigma)} = \Delta_{\sigma,\mathfrak{ba}(id,id)^{-1}\mathfrak{ca}(id,id)} = \Delta_{\sigma,\mathfrak{bc}}$ by lemma 4.4.1. In another word, for any $\mathfrak{b} \in F$ and $\mathfrak{c} \in \mathfrak{C}_{\mathfrak{a}}$, the K-action of \mathfrak{b} on \mathfrak{c} and the F-action of \mathfrak{b} on \mathfrak{c} agree.

Lemma 4.4.14. For every $\sigma \in \operatorname{Gal}(K/F)$, $\Delta_{\sigma,1}$ is invertible.

Proof. It is sufficient to prove that $\Delta_{\sigma,1}$ has a left inverse and right inverse. The left inverse of $\Delta_{\sigma,1}$ is

$$\Delta_{\sigma^{-1},\mathfrak{a}(\sigma^{-1},\sigma)^{-1}\mathfrak{a}(\mathsf{id},\mathsf{id})^{-1}}$$
.

Indeed, for any $a \in K$, we have

$$\Delta_{\sigma^{-1},\mathfrak{a}} \Delta_{\sigma,1} = \Delta_{\mathsf{id},\mathfrak{a\mathfrak{a}}(\sigma^{-1},\sigma)},$$

hence substitute $\mathfrak{a} = \mathfrak{a} (\sigma^{-1}, \sigma)^{-1} \mathfrak{a}(\mathsf{id}, \mathsf{id})^{-1}$, we see the right hand side is $\Delta_{\mathsf{id}, \mathfrak{a}(\mathsf{id}, \mathsf{id})^{-1}}$ which is precisely $1 \in \mathfrak{C}_{\mathfrak{a}}$. The right inverse is

$$\Delta_{\sigma^{-1},\sigma^{-1}(\mathfrak{a}(\sigma,\sigma^{-1})^{-1}\mathfrak{a}(\mathsf{id},\mathsf{id})^{-1})}$$

Indeed, for any $a \in K$, we have

$$\Delta_{\sigma,1} \Delta_{\sigma^{-1},\mathfrak{a}} = \Delta_{\mathsf{id},\sigma(\mathfrak{a})\mathfrak{a}(\sigma,\sigma^{-1})},$$

hence substitude $\mathfrak{a} = \sigma^{-1} \left(\mathfrak{a} \left(\sigma, \sigma^{-1} \right)^{-1} \mathfrak{a}(\mathsf{id}, \mathsf{id})^{-1} \right)$, the right hand side is again $\Delta_{\mathsf{id}, \mathfrak{a}(\mathsf{id}, \mathsf{id})^{-1}}$ which is precisely $1 \in \mathfrak{C}_{\mathfrak{a}}$.

Lemma 4.4.15. For any $c \in K$, we have

$$\Delta_{\sigma,1} \iota_{\mathfrak{a}}(\mathfrak{c}) = \iota_{\mathfrak{a}}(\sigma \cdot \mathfrak{c}) \Delta_{\sigma,1} = \Delta_{\sigma,\sigma \cdot \mathfrak{c}}$$

and consequently,

$$\Delta_{\sigma,1}\,\iota_{\mathfrak{a}}(c)\,\Delta_{\sigma,1}^{-1}=\iota_{\mathfrak{a}}(\sigma\cdot c).$$

Proof. We calculate

$$\begin{split} \Delta_{\sigma,1}\iota_{\mathfrak{a}}(c) &= \Delta_{\sigma,1} \, \Delta_{\mathrm{id},c\,\mathfrak{a}(\mathrm{id},\mathrm{id})^{-1}} \\ &= \Delta_{\sigma,\sigma(c\,\mathfrak{a}(\mathrm{id},\mathrm{id})^{-1}\,)\mathfrak{a}(\sigma,1)} \\ &= \Delta_{\sigma,\sigma(c)\,\sigma(\mathfrak{a}(\mathrm{id},\mathrm{id}))^{-1}\,\sigma(\mathfrak{a}(\mathrm{id},\mathrm{id}))} \\ &= \Delta_{\sigma,\sigma(c)}. \end{split}$$

Lemma 4.4.16. We have $\Delta_{\sigma,1} \Delta_{\tau,1} = \iota_{\mathfrak{a}}(\mathfrak{a}(\sigma,\tau))\Delta_{\sigma\tau,1} = \mathfrak{a}(\sigma,\tau) \cdot \Delta_{\sigma\tau,1}$ Consequently we have for any $c, d \in K$,

$$\Delta_{\sigma,c}\Delta_{\tau,d} = (c\sigma(d)\mathfrak{a}(\sigma,\tau)) \cdot \Delta_{\sigma\tau,1}.$$

Proof. The first equality is in construction 4.4.8. For the second equality, by lemma 4.4.15, we have $\Delta_{\sigma,c}\Delta_{\sigma,d} = (c \cdot \Delta_{\sigma,1}) (d \cdot \Delta_{\sigma,1})$

$$\Delta_{\sigma,c}\Delta_{\sigma,d} = (c \cdot \Delta_{\sigma,1}) (d \cdot \Delta_{\tau,1})$$

= $\iota_{\mathfrak{a}}(c) (\Delta_{\sigma,1}\iota_{\mathfrak{a}}(d)) \Delta_{\tau,1}$
= $\iota_{\mathfrak{a}}\Delta_{\sigma,\sigma\cdot d}\Delta_{\tau,1}$
= $c \cdot \sigma(d) \cdot \Delta_{\sigma,1}\Delta_{\tau,1}$
= $c \cdot \sigma(d) \cdot \mathfrak{a}(\sigma,\tau) \cdot \Delta_{\sigma\tau,1}$.

Lemma 4.4.17. The set $\{\Delta_{\sigma,1} | \sigma \in \operatorname{Gal}(K/F)\}$ forms a K-basis for $\mathfrak{C}_{\mathfrak{a}}$.

.

Proof. Suppose some linear combination $\sum_{\sigma} \lambda_{\sigma} \cdot \Delta_{\sigma,1}$ is 0 for some λ_{σ} 's in K. We have, by the equality in construction 4.4.8

$$\sum_{\sigma\in \mathrm{Gal}(K/F)}\lambda_{\sigma}\cdot \Delta_{\sigma,1}=\sum_{\sigma\in \mathrm{Gal}(K/F)}\Delta_{\sigma,\lambda_{\sigma}}=0.$$

Thus, for any $\tau \in \operatorname{Gal}(K/F)$, we have

$$\left(\sum_{\sigma\in \mathrm{Gal}(K/F)}\lambda_{\sigma}\cdot \Delta_{\sigma,1}\right)(\tau)=0=\lambda_{\tau},$$

which proves linear independence. The fact that $\{\Delta_{\sigma,1} | \sigma \in \operatorname{Gal}(K/F)\}$ spans $\mathfrak{C}_{\mathfrak{a}}$ is easy to see because every $\Delta_{\tau, a} = a \cdot \Delta_{\tau, 1}$ is certainly in the span.

Corollary 4.4.18. When K/F is a finite dimensional Galois extension, the K-dimension of $\mathfrak{C}_{\mathfrak{a}}$ is $\dim_F K \text{ and the } F\text{-dimension of } \mathfrak{C}_\mathfrak{a} \text{ is } (\dim_F K)^2.$

Now we see that cross product, like a good representation, is a K-module and F-algebra with a K-embedding and correct F-dimension. In the next sections, we prove that $\mathfrak{C}_{\mathfrak{a}}$ is in fact a central simple F-algebra.

Central Algebra

We will assume K/F is a finite dimensional Galois extension.

Theorem 4.4.19 (Centrality). $\mathfrak{C}_{\mathfrak{a}}$ is a central F-algebra.

Proof. Let $z \in \mathfrak{C}_{\mathfrak{a}}$ that is in the centre. We want to prove that z is in F. We write z as $\sum_{\sigma} \lambda_{\sigma} \cdot \Delta_{\sigma,1}$. We see that, for any $\tau \in \operatorname{Gal}(K/F)$, we have

$$z = \sum_{\sigma \in \operatorname{Gal}(K/F)} \lambda_{\tau^{-1}\sigma\tau} \cdot \Delta_{\tau^{-1}\sigma\tau,1}.$$

Therefore for any $d \in K$ and $\tau \in \operatorname{Gal}(K/F)$, by lemma 4.4.16 and lemma 4.4.15, we have

$$\begin{split} z\,\Delta_{\tau,d} &= \sum_{\sigma\in \mathrm{Gal}(\mathsf{K}/\mathsf{F})} \lambda_{\sigma}\cdot\Delta_{\sigma,1}\Delta_{\tau,d} \\ &= \sum_{\sigma\in \mathrm{Gal}(\mathsf{K}/\mathsf{F})} \lambda_{\sigma}\cdot\sigma(d)\cdot\mathfrak{a}(\sigma,\tau)\cdot\Delta_{\sigma\tau,1} \\ &= \sum_{\sigma\in \mathrm{Gal}(\mathsf{K}/\mathsf{F})} (\lambda_{\sigma}\sigma(d)\mathfrak{a}(\sigma,\tau))\cdot\Delta_{\sigma\tau,1} \\ \Delta_{\tau,d}\,z &= \sum_{\sigma\in \mathrm{Gal}(\mathsf{K}/\mathsf{F})} \Delta_{\tau,d}\,(\lambda_{\tau^{-1}\sigma\tau}\cdot\Delta_{\tau^{-1}\sigma\tau,1}) \\ &= \sum_{\sigma\in \mathrm{Gal}(\mathsf{K}/\mathsf{F})} \Delta_{\tau,d}\iota_{\mathfrak{a}}\,(\lambda_{\tau^{-1}\sigma\tau})\,\Delta_{\tau^{-1}\sigma\tau,1} \\ &= \sum_{\sigma\in \mathrm{Gal}(\mathsf{K}/\mathsf{F})} d\cdot\Delta_{\tau,1}\iota_{\mathfrak{a}}\,(\lambda_{\tau^{-1}\sigma\tau})\,\Delta_{\tau^{-1}\sigma\tau,1} \\ &= \sum_{\sigma\in \mathrm{Gal}(\mathsf{K}/\mathsf{F})} d\cdot\Delta_{\tau,\tau\cdot\lambda_{\tau^{-1}\sigma\tau}}\Delta_{\tau^{-1}\sigma\tau,1} \\ &= \sum_{\sigma\in \mathrm{Gal}(\mathsf{K}/\mathsf{F})} d\cdot\tau\,(\lambda_{\tau^{-1}\sigma\tau})\cdot\Delta_{\tau,1}\Delta_{\tau^{-1}\sigma\tau,1} \\ &= \sum_{\sigma\in \mathrm{Gal}(\mathsf{K}/\mathsf{F})} d\cdot\tau\,(\lambda_{\tau^{-1}\sigma\tau})\cdot\mathfrak{a}\,(\tau,\tau^{-1}\sigma\tau)\cdot\Delta_{\sigma\tau,1} \\ &= \sum_{\sigma\in \mathrm{Gal}(\mathsf{K}/\mathsf{F})} d\cdot\tau\,(\lambda_{\tau^{-1}\sigma\tau})\mathfrak{a}\,(\tau,\tau^{-1}\sigma\tau))\cdot\Delta_{\sigma\tau,1}. \end{split}$$

By lemma 4.4.17, for any $\sigma, \tau \in \operatorname{Gal}(K/F)$ and $d \in K$, we have that

$$\lambda_{\sigma}\sigma(d)\mathfrak{a}(\sigma,\tau) = d\tau \left(\lambda_{\tau^{-1}\sigma\tau}\right)\mathfrak{a}\left(\tau,\tau^{-1}\sigma\tau\right). \tag{4.3}$$

In particular, with d = 1, we have

$$\lambda_{\sigma}\mathfrak{a}(\sigma,\tau) = \tau \left(\lambda_{\tau^{-1}\sigma\tau}\right)\mathfrak{a}\left(\tau,\tau^{-1}\sigma\tau\right),$$

we substitute back into eq. (4.3) and get

$$\lambda_{\sigma}\sigma(d)\mathfrak{a}(\sigma,\tau) = d\lambda_{\sigma}\mathfrak{a}(\sigma,\tau).$$

With $\tau = id$, we have

$$\lambda_{\sigma}\sigma(d)\mathfrak{a}(\sigma, \mathrm{id}) = d\lambda_{\sigma}\mathfrak{a}(\sigma, \mathrm{id}),$$

Hence for all $d \in K$ with $\lambda_{\sigma} \neq 0$, we have $\sigma(d) = d$. We immediately deduce that for all $\sigma \neq id$, $\lambda_{\sigma} = 0$ by contraposition. Thus $z = \lambda_{id} \Delta_{id,1} = \Delta_{id,\lambda_{id}} = \iota_{\mathfrak{a}} (\lambda_{id}\mathfrak{a}(id,id)) = (\lambda_{id}\mathfrak{a}(id,id)) \cdot 1$. Consequently, to prove z is in F, it is sufficient to prove that $\lambda_{id}\mathfrak{a}(id,id)$ is in F. Since K/F is finite dimensional and Galois, we only need to prove that $\lambda_{id}\mathfrak{a}(id,id)$ is fixed by every $\tau \in \operatorname{Gal}(K/F)$.Indeed, with d = 1 and $\sigma = id$ in eq. (4.3), we have

$$\begin{split} \lambda_{id}\mathfrak{a}(\mathsf{id},\tau) &= \tau\left(\lambda_{id}\right)\mathfrak{a}(\tau,\mathsf{id}) \\ &= \lambda_{id}\mathfrak{a}(\mathsf{id},\mathsf{id}) \\ &= \tau\left(\lambda_{id}\right)\tau\left(\mathfrak{a}(\mathsf{id},\mathsf{id})\right) \\ &= \tau\left(\lambda_{id}\mathfrak{a}(\mathsf{id},\mathsf{id})\right). \end{split}$$

-	-	-	-	
L				
L				

Simple Ring

In this section we assume K/F is a finite dimensional field extension. Let $I \subseteq \mathfrak{C}_{\mathfrak{a}}$ be a two sided ideal, we aim to show that either $I = \{0\}$ or $I = \mathfrak{C}_{\mathfrak{a}}$. In this section, we use π to denote the canonical ring homomorphism $\mathfrak{C}_{\mathfrak{a}} \to \mathfrak{C}_{\mathfrak{a}}/I$. We restrict π to $\pi|_{\mathrm{im}(\mathfrak{l}_{\mathfrak{a}})} : \mathrm{im}(\mathfrak{l}_{\mathfrak{a}}) \to \mathfrak{C}_{\mathfrak{a}}/I$ and denote the range of $\pi|_{\mathrm{im}(\mathfrak{l}_{\mathfrak{a}})}$ to be Π .

Construction 4.4.9. The quotient ring $\mathfrak{C}_{\mathfrak{a}}/_{\mathrm{I}}$ is a Π -module defined by $\pi(\iota_{\mathfrak{a}}(\mathfrak{a})) \cdot \pi(\mathfrak{y}) := \pi(\mathfrak{a} \cdot \mathfrak{y})$. We first check that the Π -action is well-defined:

- Independence of a: Let $a, b \in K$ be such that $\pi(\iota_a(a)) = \pi(\iota_a(b))$, that is, $\iota_a(a-b) \in I$. Since I is a two sided ideal, $a \cdot y - b \cdot y = (a-b) \cdot y = \iota_a(a-b)y$ is also in I. This proves $\pi(a \cdot y) = \pi(b \cdot y)$.
- Independence of y: Let $y_1, y_2 \in \mathfrak{C}_\mathfrak{a}$ be such that $y_1 y_2 \in I$, then for any $\mathfrak{a} \in K$, $\mathfrak{a} \cdot y_1 - \mathfrak{a} \cdot y_2 = \iota_\mathfrak{a}(\mathfrak{a}) (y_1 - y_2)$ is in I because I is a two sided ideal. This proves $\pi(\iota_\mathfrak{a}(\mathfrak{a})) \cdot \pi(y_1) = \pi(\iota_\mathfrak{a}(\mathfrak{a})) \cdot \pi(y_2)$.

Then we check the axioms of module:

- Let $y \in \mathfrak{C}_{\mathfrak{a}}$, we check that $1 \cdot \pi(y) = \pi(y)$ and $0 \cdot \pi(y) = 0$. This is because $\Pi \ni 1 = \pi(\iota_{\mathfrak{a}}(1))$ and $\Pi \ni 0 = \pi(\iota_{\mathfrak{a}}(0))$. Let $\mathfrak{a} \in K$, $\pi(\iota_{\mathfrak{a}}(\mathfrak{a})) \cdot 0 = 0$ because $0 \in \mathfrak{C}_{\mathfrak{a}}/I$ is equal to $\pi(0)$.
- Let $a, b \in K$ and $x, y \in \mathfrak{C}_{\mathfrak{a}}$, we check $(\pi(\iota_{\mathfrak{a}}(a)) + \pi(\iota_{\mathfrak{a}}(b))) \cdot \pi(x) = \pi(\iota_{\mathfrak{a}}(a)) \cdot \pi(x) + \pi(\iota_{\mathfrak{a}}(b)) \cdot \pi(x)$ and $\pi(\iota_{\mathfrak{a}}(a)) \cdot (\pi(x) + \pi(y)) = \pi(\iota_{\mathfrak{a}}(a)) \cdot \pi(x) + \pi(\iota_{\mathfrak{a}}(a)) \cdot \pi(y)$. These are true because π preserves addition. Similarly $\pi(\iota_{\mathfrak{a}}(a)) \cdot \pi(\iota_{\mathfrak{a}}(b)) \cdot \pi(x) = \pi(\iota_{\mathfrak{a}}(ab)) \cdot \pi(x)$ because π preserves multiplication as well.

Hence $\mathfrak{C}_{\mathfrak{a}}/I$ is also a K-module by pulling back the Π -module structure along $K \to \Pi$ given by $\mathfrak{a} \mapsto \pi(\iota_{\mathfrak{a}}(\mathfrak{a}))$. Note that π is a K-linear map between $\mathfrak{C}_{\mathfrak{a}}$ and $\mathfrak{C}_{\mathfrak{a}}/I$ by this construction.

Lemma 4.4.20. If $I \neq \mathfrak{C}_{\mathfrak{a}}$, the set $\{\pi(\Delta_{\sigma,1}) | \sigma \in \operatorname{Gal}(K/F)\}$ forms a K-basis for $\mathfrak{C}_{\mathfrak{a}}/I$.

Proof. It is easy to see that the set spans $\mathfrak{C}_{\mathfrak{a}/I}$ because $\{\Delta_{\sigma,1} | \sigma \in \operatorname{Gal}(K/F)\}$ spans $\mathfrak{C}_{\mathfrak{a}}$ (lemma 4.4.17). For linear-independence, the idea is the same as in the proof of theorem 4.3.10. We repeat the argument here.

Suppose that $\{\pi(\Delta_{sigma,1}) | \sigma \in \operatorname{Gal}(K/F)\}$ is linearly dependent. Let $J \subseteq \operatorname{Gal}(K/F)$ be such that $\{\pi(\Delta_{\sigma,1}) | \sigma \in J\}$ is the maximally linearly independent set. Let σ be an arbitrary automorphism that is not in J. Therefore, we have $\pi(\Delta_{\sigma,1}) \in \langle \pi(\Delta_{\tau,1}) | \tau \in J \rangle$. Hence we have, by construction 4.4.9 and construction 4.4.8

$$\pi(\Delta_{\sigma,1}) = \sum_{\tau \in J'} \lambda_{\tau} \cdot \pi(\Delta_{\tau,1}) = \sum_{\tau \in J'} \pi(\iota_{\mathfrak{a}}(\lambda_{\tau})) \pi(\Delta_{\tau,1}) = \sum_{\tau \in J'} \pi(\iota_{\mathfrak{a}}(\lambda_{\tau}) \Delta_{\tau,1}) = \sum_{\tau \in J'} \pi(\lambda_{\tau} \cdot \Delta_{\tau,1}).$$

for some non-zero $\lambda_{\tau} \in K$ and some $J' \subseteq J$. Hence, for any $c \in K$, we have

$$\begin{split} \pi(\iota_{\mathfrak{a}}(\sigma \cdot c)) \, \pi(\Delta_{\sigma,1}) &= \pi(\Delta_{\sigma,1}) \, \pi(\iota_{\mathfrak{a}}(c)) & \text{by lemma 4.4.15} \\ &= \sum_{\tau \in J} \pi(\iota_{\mathfrak{a}}(\lambda_{\tau})) \, \pi(\Delta_{\tau,1}) \, \pi(\iota_{\mathfrak{a}}(c)) \\ &= \sum_{\tau \in J} \pi(\iota_{\mathfrak{a}}(\lambda_{\tau}) \, \iota_{\mathfrak{a}}(\tau \cdot c) \Delta_{\tau,1}) & \text{by lemma 4.4.15 again} \\ &= \sum_{\tau \in J} \pi(\iota_{\mathfrak{a}}(\lambda_{\tau}\tau(c))) \, \pi(\Delta_{\tau,1}) & \text{by lemma 4.4.15 again} \\ &= \sum_{\tau \in J} \pi(\iota_{\mathfrak{a}}(\lambda_{\tau}\tau(c))) \, \pi(\Delta_{\tau,1}) & \\ &= \sum_{\tau \in J} (\lambda_{\tau}\tau(c)) \cdot \pi(\Delta_{\tau,1}) & \\ &= \sum_{\tau \in J} \pi(\iota_{\mathfrak{a}}(\sigma \cdot c)) \, \pi(\iota_{\mathfrak{a}}(\lambda_{\tau})) \, \pi(\Delta_{\tau,1}) & \\ &= \sum_{\tau \in J} \pi(\iota_{\mathfrak{a}}(\sigma(c)\lambda_{\tau})) \, \pi(\Delta_{\tau,1}) & \\ &= \sum_{\tau \in J} (\sigma(c)\lambda_{\tau}) \cdot \pi(\Delta_{\tau,1}) . \end{split}$$

Since, $\{\pi(\Delta_{\tau,1}) | \tau \in J\}$ is linearly independent, for all $c \in K$ and $\tau \in J$, we have that $\lambda_{\tau}\tau(c) = \sigma(c)\lambda_{\tau}$. Note that $J' \neq \emptyset$, otherwise, $\pi(\Delta_{\sigma,1}) = 0$ implying that $\Delta_{\sigma,1} \in I$ which by lemma 4.4.14 is invertible but I does not equal to $\mathfrak{C}_{\mathfrak{a}}$. Hence for each $\tau \in J'$, we have that for all $c \in K$, since λ_{τ} is not zero, $\sigma(c) = \tau(c)$, i.e. $\sigma = \tau$. Therefore, σ is in $J' \subseteq J$ after all.

Corollary 4.4.21. If $I \neq \mathfrak{C}_{\mathfrak{a}}$, the quotient ring $\mathfrak{C}_{\mathfrak{a}}/_{I}$ is isomorphic to $\mathfrak{C}_{\mathfrak{a}}$ as K-modules. In particular π is a K-linear isomorphism between $\mathfrak{C}_{\mathfrak{a}}$ and the quotient ring $\mathfrak{C}_{\mathfrak{a}}/_{I}$.

Proof. Indeed, by lemma 4.4.17, $\{\Delta_{\sigma,1} | \sigma \in \operatorname{Gal}(\mathsf{K}/\mathsf{F})\}\$ is a K-basis for $\mathfrak{C}_{\mathfrak{a}}$; and by lemma 4.4.20, $\{\pi(\Delta_{\sigma,1}) | \sigma \in \operatorname{Gal}(\mathsf{K}/\mathsf{F})\}\$ is a K-basis for $\mathfrak{C}_{\mathfrak{a}}/_{\mathrm{I}}$. The two sets obviously biject. Hence we can define a K-linear isomorphism by $\Delta_{\sigma,1} \mapsto \pi(\Delta_{\sigma,1})$. This isomorphism is equal to π everywhere. \Box

Corollary 4.4.22 (Simple Ring). $\mathfrak{C}_{\mathfrak{a}}$ is a simple ring.

Proof. For any two-sided-ideal I that is not equal to $\mathfrak{C}_{\mathfrak{a}}$, by corollary 4.4.21, $\pi : \operatorname{cross}_{\mathfrak{a}} \to \mathfrak{C}_{\mathfrak{a}}/_{\mathrm{I}}$ is a K-linear isomorphism, therefore I is equal to $\mathfrak{0}$.

Theorem 4.4.23. Let K/F be a finite dimensional and Galois field extension and \mathfrak{a} be a 2-cocycle in \mathcal{B}^2 (Gal(K/F), K^*), \mathfrak{C}_a is a finite dimensional central simple F-algebra.

Proof. Theorem 4.4.19, lemma 4.4.17 and corollary 4.4.22.

4.4.3 From
$$\mathrm{H}^2(\mathrm{Gal}(\mathsf{K}/\mathsf{F}),\mathsf{K}^{\star})$$
 to $\mathrm{Br}(\mathsf{K}/\mathsf{F})$

For every 2-cocycle \mathfrak{a} , we have defined the cross product $\mathfrak{C}_{\mathfrak{a}}$ and proved that it is indeed a finite dimensional central simple F-algebra in theorem 4.4.23; that is we have a function from $\mathcal{B}^2(\operatorname{Gal}(K/F), K^*)$ to CSA_F . If we want a function from $\operatorname{H}^2(\operatorname{Gal}(K/F), K^*)$ to $\operatorname{Br}(K/F)$, we need to show that if \mathfrak{a} and \mathfrak{b} are cohomologous, $\mathfrak{C}_{\mathfrak{a}}$ and $\mathfrak{C}_{\mathfrak{b}}$ are Brauer equivalent. We state it as a theorem:

Theorem 4.4.24. If K/F is a finite dimensional and Galois field extension, the function \mathfrak{C} : $\mathrm{H}^{2}(\mathrm{Gal}(K/F), K^{\star}) \to \mathrm{Br}(K/F)$ defined by

$$\mathfrak{a}\mapsto [\mathfrak{C}_{\mathfrak{a}}]_{\sim_{\mathrm{B}}}$$

is well-defined.

Proof. Let \mathfrak{a} and \mathfrak{b} be two cohomologous 2-cocycles. By definition 4.4.1, for some \mathfrak{c} : Gal(K/F) \rightarrow K^{*}, for all $\sigma, \tau \in \text{Gal}(K/F)$, we have

$$\frac{\sigma(\mathfrak{c}(\tau))}{\mathfrak{c}(\sigma\tau)}\mathfrak{c}(\sigma) = \frac{\mathfrak{a}(\sigma,\tau)}{\mathfrak{b}(\sigma,\tau)}.$$
(4.4)

Let us denote A to be the K-basis $\{\Delta_{\sigma,1}^{\mathfrak{a}}|\sigma\in \operatorname{Gal}(K/F)\}\$ for $\mathfrak{C}_{\mathfrak{a}}$ and B to be the K-basis $\{\mathfrak{c}(\sigma) \cdot \Delta_{\sigma,1}^{\mathfrak{b}}|\sigma\in \operatorname{Gal}(K/F)\}\$ for $\mathfrak{C}_{\mathfrak{b}}$. We immediately have a K-linear isomorphism $\phi:\mathfrak{C}_{\mathfrak{a}}\cong\mathfrak{C}_{\mathfrak{b}}\$ by mapping A to B. Since the K-action on $\mathfrak{C}_{\mathfrak{a}}\$ and $\mathfrak{C}_{\mathfrak{b}}\$ agrees with the F-action on them (construction 4.4.8), ϕ is also an F-linear isomorphism. We check that $\phi(1) = 1$ and $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in \mathfrak{C}_{\mathfrak{a}}$:

1. preservation of one: with $\sigma = \tau = id$ in eq. (4.4), we have $\mathfrak{c}(id) = \mathfrak{a}(id, id)\mathfrak{b}(id, id)^{-1}$, thus

$$\begin{split} \varphi(1) &= \varphi \left(\Delta^{\mathfrak{a}}_{\mathsf{id},\mathfrak{a}(\mathsf{id},\mathsf{id})^{-1}} \right) \\ &= \varphi \left(\mathfrak{a}(\mathsf{id},\mathsf{id})^{-1} \cdot \Delta^{\mathfrak{a}}_{\mathsf{id},1} \right) \\ &= \mathfrak{a}(\mathsf{id},\mathsf{id})^{-1} \cdot \mathfrak{c}(\mathsf{id}) \cdot \Delta^{\mathfrak{b}}_{\mathsf{id},1} \\ &= \mathfrak{a}(\mathsf{id},\mathsf{id})^{-1} \cdot \mathfrak{c}(\mathsf{id}) \cdot \mathfrak{b}(\mathsf{id},\mathsf{id}) \cdot \mathfrak{b}(\mathsf{id},\mathsf{id})^{-1} \cdot \Delta^{\mathfrak{b}}_{\mathsf{id},1} \\ &= \left(\mathfrak{a}(\mathsf{id},\mathsf{id})^{-1} \mathfrak{c}(\mathsf{id}) \mathfrak{b}(\mathsf{id},\mathsf{id}) \right) \cdot \left(\mathfrak{b}(\mathsf{id},\mathsf{id})^{-1} \cdot \Delta_{\mathsf{id},1} \right) \\ &= \left(\mathfrak{a}(\mathsf{id},\mathsf{id})^{-1} \mathfrak{a}(\mathsf{id},\mathsf{id}) \right) \cdot \Delta_{\mathsf{id},\mathfrak{b}(\mathsf{id},\mathsf{id})^{-1}} \\ &= \Delta_{\mathsf{id},\mathfrak{b}(\mathsf{id},\mathsf{id})^{-1}}. \end{split}$$

2. preservation of multiplication: let $\sigma, \tau \in \operatorname{Gal}(K/F)$ and $a, b \in K$, we need to prove that $\phi(\Delta_{\sigma,a}^{\mathfrak{a}}\Delta_{\tau,b}^{\mathfrak{a}}) = \phi(\Delta_{\sigma,a}^{\mathfrak{a}})\phi(\Delta_{\tau,b}^{\mathfrak{b}})$. From eq. (4.4), we see that

$$\sigma(\mathfrak{c}(\tau))\mathfrak{c}(\sigma)\mathfrak{b}(\sigma,\tau) = \mathfrak{c}(\sigma\tau)\mathfrak{a}(\sigma,\tau).$$

Hence, by lemma 4.4.16 and lemma 4.4.15, we have

$$\begin{split} \varphi \left(\Delta_{\sigma,a}^{\mathfrak{a}} \Delta_{\tau,b}^{\mathfrak{a}} \right) &= \varphi \left(\Delta_{\sigma\tau,a\sigma(b)\mathfrak{a}(\sigma,\tau)}^{\mathfrak{a}} \right) \\ &= \varphi \left(a\sigma(b)\mathfrak{a}(\sigma,\tau) \cdot \Delta_{\sigma\tau,1}^{\mathfrak{a}} \right) \\ &= a\sigma(b)\mathfrak{a}(\sigma,\tau) \cdot \varphi \left(\Delta_{\sigma\tau,1}^{\mathfrak{a}} \right) \\ &= a\sigma(b)\mathfrak{a}(\sigma,\tau)\mathfrak{c}(\sigma\tau) \cdot \Delta_{\sigma\tau,1}^{\mathfrak{b}} \\ &= a\sigma(b)\sigma(\mathfrak{c}(\tau))\mathfrak{c}(\sigma)\mathfrak{b}(\sigma,\tau) \cdot \Delta_{\sigma\tau,1}^{\mathfrak{b}} \\ &= \mathfrak{c}(\sigma)\sigma(\mathfrak{c}(\tau)) \cdot \Delta_{\sigma\tau,a\sigma(b)\mathfrak{b}(\sigma\tau)}^{\mathfrak{b}} \\ &= \mathfrak{c}(\sigma)\sigma(\mathfrak{c}(\tau)) \cdot \Delta_{\sigma\tau,a\sigma(b)\mathfrak{b}(\sigma\tau)}^{\mathfrak{b}} \\ &= \mathfrak{c}(\sigma)\sigma(\mathfrak{c}(\tau)) \cdot \Delta_{\sigma\tau,1}^{\mathfrak{b}} \\ \varphi \left(\Delta_{\sigma,a}^{\mathfrak{a}} \right) \varphi \left(\Delta_{\tau,b}^{\mathfrak{a}} \right) &= \varphi \left(a \cdot \Delta_{\sigma,1}^{\mathfrak{a}} \right) \varphi \left(b \cdot \Delta_{\tau,1}^{\mathfrak{a}} \right) \\ &= \left(a\mathfrak{c}(\sigma) \cdot \Delta_{\sigma,1}^{\mathfrak{b}} \right) \left(\mathfrak{b}\mathfrak{c}(\tau) \cdot \Delta_{\tau,1}^{\mathfrak{b}} \right) \\ &= \mathfrak{a}\mathfrak{c}(\sigma) \cdot \left(\Delta_{\sigma,1}^{\mathfrak{b}} \mathfrak{l} \mathfrak{b}(\mathfrak{c}(\tau)) \right) \Delta_{\tau,1}^{\mathfrak{b}} \\ &= \mathfrak{a}\mathfrak{c}(\sigma) \sigma(b)\sigma(\mathfrak{c}(\tau)) \cdot \Delta_{\sigma\tau,1}^{\mathfrak{b}} \\ &= \mathfrak{a}\mathfrak{c}(\sigma)\sigma(b)\sigma(\mathfrak{c}(\tau))\mathfrak{b}(\sigma,\tau) \cdot \Delta_{\sigma\tau,1}^{\mathfrak{b}} \\ &= \mathfrak{c}(\sigma)\sigma(\mathfrak{c}(\tau)) \cdot \Delta_{\sigma\tau,a\sigma(b)\mathfrak{b}(\sigma,\tau)} \\ &= \mathfrak{c}(\sigma)\sigma(\mathfrak{c}(\tau)) \cdot \Delta_{\sigma,a}^{\mathfrak{b}} \Delta_{\tau,b}^{\mathfrak{b}}. \end{split}$$

Hence ϕ is actually an F-algebra isomorphism between $\mathfrak{C}_{\mathfrak{a}}$ and $\mathfrak{C}_{\mathfrak{b}}$ and isomorphic central simple F-algebras are certainly Brauer equivalent.

4.4.4 $\mathrm{H}^2 \circ \mathfrak{C}$ and $\mathfrak{C} \circ \mathrm{H}^2$

For a finite dimensional Galois extension of field K/F, we have constructed two functions H^2 and \mathfrak{C} between the second cohomology group $H^2(\text{Gal}(K/F), K^*)$ and the relative Brauer group Br(K/F). In this section, we prove that they are mutual inverse to one another,

Lemma 4.4.25. The composition of \mathfrak{C} and H^2 is the identity:

$$\operatorname{H}^{2}(\operatorname{Gal}(K/F),K^{\star}) \xrightarrow{\mathfrak{C}} \operatorname{Br}(K/F) \xrightarrow{\operatorname{H}^{2}} \operatorname{H}^{2}(\operatorname{Gal}(K/F),K^{\star}).$$

Proof. Let \mathfrak{a} be any 2-cocycle, by lemma 4.4.15, we notice that $\mathfrak{x} : \sigma \mapsto \Delta_{\sigma,1}$ is a conjugation sequence for $\mathfrak{C}_{\mathfrak{a}}$. Hence by construction 4.4.3, ?? and theorem 4.4.24, we evaluate the composition at \mathfrak{a} as:

$$[\mathfrak{a}]\longmapsto [\mathfrak{C}_{\mathfrak{a}}]_{\sim_{\mathrm{Br}}}\longmapsto \left[(\sigma,\tau)\mapsto \mathrm{comp}^{x}_{\Delta_{\sigma,1},\Delta_{\tau,1},\Delta_{\sigma\tau,1}}\right]$$

That is, we need to show that \mathfrak{a} and $(\sigma, \tau) \mapsto \operatorname{comp}_{\Delta_{\sigma,1}, \Delta_{\tau,1}, \Delta_{\sigma\tau,1}}$ are 2-cohomologous. In fact, they are equal. By construction 4.4.2, we have that $\iota_{\mathfrak{C}_{\mathfrak{a}}}\left(\operatorname{comp}_{\Delta_{\sigma,1}, \Delta_{\tau,1}, \Delta_{\sigma\tau,1}}^{\chi}\right) = \Delta_{\sigma,1}\Delta_{\tau,1}\Delta_{\sigma\tau,1}^{-1} = \mathfrak{a}(\sigma, \tau) \cdot \Delta_{\sigma\tau,1}\Delta_{\sigma\tau,1}^{-1} = \mathfrak{a}(\sigma, \tau) \cdot 1 = \Delta_{\operatorname{id},\mathfrak{a}(\sigma, \tau)}$ which is precisely $\iota_{\mathfrak{C}_{\mathfrak{a}}}(\mathfrak{a}(\sigma, \tau))$.

Lemma 4.4.26. The composition of H^2 and \mathfrak{C} is the identity:

$$\operatorname{Br}(K/F) \xrightarrow{\operatorname{H}^2} \operatorname{H}^2(\operatorname{Gal}(K/F), K^*) \xrightarrow{\mathfrak{C}} \operatorname{Br}(K/F) \ .$$

Proof. Let $X \in Br(K/F)$, A be an arbitrary good representation of X and x be an arbitrary Aconjugation sequence which exists by corollary 4.3.4 and construction 4.3.4. By definition 4.3.1, $X = [A]_{\sim Br}$. Hence by ?? and theorem 4.4.24, we evaluate the composition at X as:

 $\left[A\right]_{\sim_{\mathrm{Br}}}\longmapsto \left[\mathcal{B}^2_x\right]\longmapsto \left[\mathfrak{C}_{\mathcal{B}^2_x}\right]\,.$

Hence we need to prove that A and $\mathfrak{C}_{\mathcal{B}^2_x}$ are Brauer equivalent. We will show that they are isomorphic as F-algebras. since $\{x_{\sigma}|\sigma \in \operatorname{Gal}(K/F)\}$ is a K-basis for A and $\{\Delta_{\sigma,1}|\sigma \in \operatorname{Gal}(K/F)\}$ is a K-basis for $\mathfrak{C}_{\mathcal{B}^2_x}$, they are certainly isomorphic as K-modules. Let $\phi : \mathfrak{C}_{\mathcal{B}^2_x} \cong A$ be the K-linear isomorphism defined by $\Delta_{\sigma,1} \mapsto x_{\sigma}$, since the K-action on A and the F-action on A are compatible (construction 4.3.2), ϕ is also an F-linear isomorphism. Like in theorem 4.4.24, we check that $\phi(1) = 1$ and $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in A$:

1. preservation of one: by construction 4.4.2, we have

$$\begin{split} \varphi(1) &= \varphi \left(\Delta_{id, \mathcal{B}_{x}^{2}(id, id)^{-1}} \right) \\ &= \mathcal{B}_{x}^{2}(id, id)^{-1} \varphi \left(\Delta_{id, 1} \right) \\ &= \mathcal{B}_{x}^{2}(id, id)^{-1} x_{id} \\ &= \operatorname{comp}_{x_{id}, x_{id}, x_{id}} x_{id} \\ &= \operatorname{comp}_{x_{id}, x_{id}, x_{id}} x_{id} x_{id} x_{id}^{-1} \\ &= x_{id} x_{id}^{-1} \\ &= 1. \end{split}$$

2. preservation of multiplication: let $\sigma, \tau \in \text{Gal}(K/F)$ and $c, d \in K$, by construction 4.4.2 and definition 4.3.3, we have

$$\begin{split} \varphi \left(\Delta_{\sigma,c} \Delta_{\tau,d} \right) &= \varphi \left(\Delta_{\sigma\tau,c\,\sigma(d)\mathcal{B}_{x}^{2}(\sigma,\tau)} \right) \\ &= c\sigma(d)\mathcal{B}_{x}^{2}(\sigma,\tau) \cdot \varphi \left(\Delta_{\sigma\tau,1} \right) \\ &= c\sigma(d)\mathcal{B}_{x}^{2}(\sigma,\tau) \cdot x_{\sigma\tau} \\ &= c\sigma(d) \operatorname{comp}_{x_{\sigma},x_{\tau},x_{\sigma\tau}} \cdot x_{\sigma\tau} \\ &= c\sigma(d) \cdot \iota_{A} \left(\operatorname{comp}_{x_{\sigma},x_{\tau},x_{\sigma\tau}} \right) x_{\sigma\tau} \\ &= c\sigma(d) \cdot x_{\sigma}x_{\tau} \\ \varphi \left(\Delta_{\sigma,c} \right) \varphi \left(\Delta_{\tau,d} \right) &= \left(c \cdot \varphi \left(\Delta_{\sigma,1} \right) \right) \left(d \cdot \varphi \left(\Delta_{\tau,1} \right) \right) \\ &= \left(c \cdot x_{\sigma} \right) \left(d \cdot x_{\tau} \right) \\ &= c \sigma_{d} \cdot x_{\sigma}x_{\tau}. \end{split}$$

Corollary 4.4.27. For a finite dimensional and Galois extension of field K/F, the relative Brauer group K/F bijects to the second cohomology group $\mathrm{H}^2\left(\mathrm{Gal}(K/F),K^\star\right)$ by the following commutative diagram

$$\begin{array}{ccc} \operatorname{Br}(\mathsf{K}/\mathsf{F}) & \stackrel{\operatorname{H}^2}{\longrightarrow} & \operatorname{H}^2\left(\operatorname{Gal}(\mathsf{K}/\mathsf{F}),\mathsf{K}^\star\right) \\ & & & \\ & & \\ & & \\ \operatorname{Br}(\mathsf{K}/\mathsf{F}) & \longleftarrow & \operatorname{H}^2\left(\operatorname{Gal}(\mathsf{K}/\mathsf{F}),\mathsf{K}^\star\right) \end{array}$$

Proof. Exactly lemma 4.4.25 and lemma 4.4.26.

4.4.5 Group Homomorphism

In previous sections, when K/F is a finite dimensional Galois extension, we have set up a bijection between the relative Brauer group Br(K/F) and the second cohomology group $H^2(Gal(K/F), K^*)$. But both functions H^2 and \mathfrak{C} are only set-theoretical function. In this section, we aim to upgrade them to group homomorphisms. Technically, we only need to prove either one of them preserves multiplication; we provide a proof that H^2 preserves one anyway because we found the proof to be entertaining.

 $\mathfrak{C}_1 = 1$ and $\mathrm{H}^2(1) = 1$

Theorem 4.4.28. The function $\mathfrak{C}: \mathrm{H}^2(\mathrm{Gal}(K/F), K^{\star}) \to \mathrm{Br}(K/F)$ preserves one, that is \mathfrak{C}

Proof. Since $\{\Delta_{\sigma,1} | \sigma \in \operatorname{Gal}(K/F)\}$ is a K-basis for \mathfrak{C}_1 where $1 \in \mathfrak{B}^2(\operatorname{Gal}(K/F), K^*)$ is the constant function 1 (lemma 4.4.17), we construct a K-linear map $\phi : \mathfrak{C}_1 \to \operatorname{End}_F K$ by $\Delta_{\sigma,1} \mapsto \sigma$; note that ϕ is F-linear as well. In fact, ϕ is also an F-algebra homomorphism:

- 1. $\phi(1) = 1$: indeed $\phi(\Delta_{id,1}) = id$.
- 2. $\phi(xy) = \phi(x)\phi(y)$: indeed, let $\sigma, \tau \in \operatorname{Gal}(K/F)$ and $c, d \in K$, we need to check that $\phi(\Delta_{\sigma,c}\Delta_{\tau,d}) = \phi(\Delta_{\sigma,c})\phi(\Delta_{\tau,d})$. The left hand side is equal to

$$\phi\left(\Delta_{\sigma\tau,c\sigma(d)}\right) = \phi\left(c\sigma(d) \cdot \Delta_{\sigma\tau,1}\right) = c\sigma(d) \cdot \sigma\tau;$$

and the right hand side is equal to

$$\phi(\mathbf{c}\cdot\Delta_{\sigma,1})\phi(\mathbf{d}\cdot\Delta_{\tau,1})=(\mathbf{c}\cdot\sigma)(\mathbf{d}\cdot\tau).$$

For any $x \in K$, applying left hand side to x will result in $c\sigma(d)\sigma(\tau(x))$ while right hand side will result in $c\sigma(d\tau(x))$, hence both sides are equal.

Hence, ϕ is an F-algebra isomorphism by corollary 1.1.8; that is we have $\mathfrak{C}_1 \cong \operatorname{End}_F K \cong \operatorname{Mat}_{\dim_F K}(F)$. We conclude that \mathfrak{C}_1 is Brauer equivalent to F and consequently $\operatorname{H}^2(1) = 1$. \Box

Corollary 4.4.29. The function $H^2 : Br(K/F) \to H^2(Gal(K/F), K^*)$ preserves one, that is $H^2(1) = 1$.

Proof. Apply \mathfrak{C} then use lemma 4.4.26 and theorem 4.4.28.

 $\mathfrak{C}_{\mathfrak{a}\mathfrak{b}}\sim_{\mathrm{Br}} \mathfrak{C}_{\mathfrak{a}}\otimes_{\mathsf{F}} \mathfrak{C}_{\mathfrak{b}}$

The argument in this section is more complicated, because, unlike before, the left hand side and the right hand side are not isomorphic as F-algebras — left hand side has F-dimension $(\dim_F K)$ while the right hand side has F-dimension $(\dim_F K)^4$. Let \mathfrak{a} and \mathfrak{b} be two 2-cocycles in \mathcal{B}^2 (Gal(K/F), K^{*}), we denote \mathfrak{c} to be the 2-cocycle \mathfrak{ab} . Intuitively, $\mathfrak{C}_{\mathfrak{a}} \otimes_F \mathfrak{C}_{\mathfrak{b}}$ is too "big", to address this issue we introduce a quotient module.

Construction 4.4.10 (M). Consider the quotient module

$$M := \frac{\mathfrak{e}_{\mathfrak{a}} \otimes_{\mathsf{F}} \mathfrak{e}_{\mathfrak{b}}}{\langle (\mathbf{k} \cdot \mathbf{a}) \otimes \mathbf{b} - \mathbf{a} \otimes (\mathbf{k} \cdot \mathbf{b}) | \mathbf{k} \in \mathsf{K}, \mathbf{a} \in \mathfrak{C}_{\mathfrak{a}}, \mathbf{b} \in \mathfrak{C}_{\mathfrak{b}} \rangle}.$$

For any $\mathfrak{a}' \in \mathfrak{C}_{\mathfrak{a}}$ and $\mathfrak{b}' \in \mathfrak{C}_{\mathfrak{b}}$, we can define an F-linear map $M \to M$ by descending the F-linear map $\mathfrak{C}_{\mathfrak{a}} \otimes_F \mathfrak{C}_{\mathfrak{b}} \to \mathfrak{C}_{\mathfrak{a}} \otimes \mathfrak{C}_{\mathfrak{b}}$

$$a \otimes b \mapsto aa' \otimes bb';$$

we need to check that for all $k \in K$, $a \in \mathfrak{C}_{\mathfrak{a}}$, $b \in \mathfrak{C}_{\mathfrak{b}}$, the image of $(k \cdot a) \otimes b - a \otimes (k \cdot b)$ is in $\langle (k \cdot a) \otimes b - a \otimes (k \cdot b) | k \in K$, $a \in \mathfrak{C}_{\mathfrak{a}}$, $b \in \mathfrak{C}_{\mathfrak{b}} \rangle$: the image is $(k \cdot aa') \otimes b - a \otimes (k \cdot bb')$ which is in the generating set with $k \in K$, $aa' \in \mathfrak{C}_{\mathfrak{a}}$, and $bb' \in \mathfrak{C}_{\mathfrak{b}}$. This map is in fact F-linear in both a' and b', hence we have an F-bilinear map $\mathfrak{C}_{\mathfrak{a}} \otimes \mathfrak{C}_{\mathfrak{b}} \to M \to M$. This gives M a $(\mathfrak{C}_{\mathfrak{a}} \otimes_F \mathfrak{C}_{\mathfrak{b}})^{opp}$ -module structure given by

$$(\mathfrak{a}' \otimes \mathfrak{b}') \cdot [\mathfrak{a} \otimes \mathfrak{b}] = \mathfrak{a} \mathfrak{a}' \otimes \mathfrak{b} \mathfrak{b}'$$

for any $a, a' \in \mathfrak{C}_a$ and $b, b' \in \mathfrak{C}_b$. All of the module axioms in this case follows from F-bilinearity.

For any $c \in \mathfrak{C}_c$, we can define another F-linear map $M \to M$ by descending the F-linear map $\mathfrak{C}_{\mathfrak{a}} \otimes_F \mathfrak{C}_{\mathfrak{b}} \to \mathfrak{C}_{\mathfrak{a}} \otimes \mathfrak{C}_{\mathfrak{b}}$

$$a\otimes b\mapsto \sum_{\sigma\in \mathrm{Gal}(K/F)}\Delta^{\mathfrak{a}}_{\sigma,c(\sigma)}a\,\otimes\,\Delta^{\mathfrak{b}}_{\sigma,1}b;$$

we need check that for all $k \in K$, $a \in \mathfrak{C}_a$, $b \in \mathfrak{C}_b$, the image of $(k \cdot a) \otimes b - a \otimes (k \cdot b)$ is in $\langle (k \cdot a) \otimes b - a \otimes (k \cdot b) | k \in K$, $a \in \mathfrak{C}_a$, $b \in \mathfrak{C}_b \rangle$: by lemma 4.4.15 the image is

$$\begin{split} &\sum_{\sigma\in \mathrm{Gal}(\mathsf{K}/\mathsf{F})} \Delta^{\mathfrak{a}}_{\sigma,\mathfrak{c}(\sigma)}(\mathbf{k}\cdot \mathbf{a}) \,\otimes\, \Delta^{\mathfrak{b}}_{\sigma,1}\mathbf{b} - \Delta^{\mathfrak{a}}_{\sigma,\mathfrak{c}(\sigma)}\mathbf{a} \,\otimes\, \Delta^{\mathfrak{b}}_{\sigma,1}(\mathbf{k}\cdot \mathbf{b}) \\ &= \sum_{\sigma\in \mathrm{Gal}(\mathsf{K}/\mathsf{F})} \Delta^{\mathfrak{a}}_{\sigma,\mathfrak{c}(\sigma)}\iota_{\mathfrak{a}}(\mathbf{k})\mathbf{a} \,\otimes\, \Delta^{\mathfrak{b}}_{\sigma,1}\mathbf{b} - \Delta^{\mathfrak{a}}_{\sigma,\mathfrak{c}(\sigma)} \,\otimes\, \Delta^{\mathfrak{b}}_{\sigma,1}\iota_{\mathfrak{b}}(\mathbf{k})\mathbf{b} \\ &= \sum_{\sigma\in \mathrm{Gal}(\mathsf{K}/\mathsf{F})} \sigma(\mathbf{k})\cdot\Delta^{\mathfrak{a}}_{\sigma,\mathfrak{c}(\sigma)}\mathbf{a} \,\otimes\, \Delta^{\mathfrak{b}}_{\sigma,1}\mathbf{b} - \Delta^{\mathfrak{a}}_{\sigma,\mathfrak{c}(\sigma)} \,\otimes\, \sigma(\mathbf{k})\cdot\Delta^{\mathfrak{b}}_{\sigma,1}\mathbf{b}, \end{split}$$

which is in $\langle (\mathbf{k} \cdot \mathbf{a}) \otimes \mathbf{b} - \mathbf{a} \otimes (\mathbf{k} \cdot \mathbf{b}) | \mathbf{k} \in \mathbf{K}, \mathbf{a} \in \mathfrak{C}_{\mathfrak{a}}, \mathbf{b} \in \mathfrak{C}_{\mathfrak{b}} \rangle$ because for each $\sigma \in \operatorname{Gal}(\mathsf{K}/\mathsf{F})$, the summand is in the generating set with $\sigma(\mathbf{k}) \in \mathsf{K}, \Delta^{\mathfrak{a}}_{\sigma,\mathfrak{c}(\sigma)} \mathbf{a} \in \mathfrak{C}_{\mathfrak{a}}$ and $\Delta^{\mathfrak{b}}_{\sigma,1} \mathbf{b} \in \mathfrak{C}_{\mathfrak{b}}$. This map is in fact F-linear in \mathbf{c} , therefore we have an F-bilinear map $\mathfrak{C}_{\mathfrak{c}} \to \mathsf{M} \to \mathsf{M}$. (In the above calculation " \otimes " symbol has low precedence.) This gives $\mathsf{M} \neq \mathfrak{C}_{\mathfrak{c}}$ -module structure given by

$$c \cdot [\mathfrak{a} \otimes \mathfrak{b}] = \left[\sum_{\sigma \in \operatorname{Gal}(\mathsf{K}/\mathsf{F})} \Delta^{\mathfrak{a}}_{\sigma, \mathfrak{c}(\sigma)} \mathfrak{a} \otimes \Delta^{\mathfrak{b}}_{\sigma, 1} \mathfrak{b} \right].$$

In particular, if **c** is of the form $\mathbf{k} \cdot \Delta_{\tau,1}^{\mathbf{c}}$, then $(\mathbf{k} \cdot \Delta_{\tau,1}^{\mathbf{c}}) \cdot [\mathbf{a} \otimes \mathbf{b}]$ is equal to $[(\mathbf{k} \cdot \Delta_{\tau,1}^{\mathbf{a}}) \mathbf{a} \otimes \Delta_{\tau,1}^{\mathbf{b}}]$ because $\Delta_{\tau,1}^{\mathbf{c}}(\sigma) = 0$ for all $\sigma \neq \tau$. Two of the module axioms need more than F-bilinearity:

• c = 1: note that $c = 1 = \mathfrak{b}(\mathsf{id}, \mathsf{id})^{-1}\mathfrak{a}(\mathsf{id}, \mathsf{id})^{-1} \cdot \Delta_{\mathsf{id}, 1}^{\mathfrak{c}}$, hence

$$\begin{aligned} 1 \cdot [a \otimes b] &= [\mathfrak{b}(\mathsf{id},\mathsf{id})^{-1}\mathfrak{a}(\mathsf{id},\mathsf{id})^{-1}\Delta^{\mathfrak{a}}_{\mathsf{id},1}a \otimes \Delta^{\mathfrak{b}}_{\mathsf{id},1}b] \\ &= [\Delta^{\mathfrak{a}}_{\mathsf{id},\mathfrak{a}(\mathsf{id},\mathsf{id})^{-1}}a \otimes \Delta^{\mathfrak{b}}_{\mathsf{id},\mathfrak{b}(\mathsf{id},\mathsf{id})^{-1}}b] \\ &= [a \otimes b]. \end{aligned}$$

• $c_1c_2 \cdot [\mathfrak{a} \otimes \mathfrak{b}] = c_1 \cdot c_2 \cdot [\mathfrak{a} \otimes \mathfrak{b}]$: assume $c_1 = k_1 \cdot \Delta_{\tau_1,1}^{\mathfrak{c}}$ and $c_2 = k_2 \cdot \Delta_{\tau_2,1}^{\mathfrak{c}}$. Then $c_1c_2 = k_1\tau_1(k_2) \cdot \Delta_{\tau_1\tau_2,\mathfrak{c}(\tau_1,\tau_2)}^{\mathfrak{c}} = k_1\tau_1(k_2)\mathfrak{a}(\tau_1,\tau_2)\mathfrak{b}(\tau_1,\tau_2) \cdot \Delta_{\tau_1\tau_2,1}^{\mathfrak{c}}$. Therefore, the left hand side is equal to

$$\begin{aligned} & \left[\left(k_1 \tau_1(k_2) \mathfrak{a}(\tau_1, \tau_2) \mathfrak{b}(\tau_1, \tau_2) \cdot \Delta^{\mathfrak{a}}_{\tau_1 \tau_2, 1} \right) \mathfrak{a} \otimes \Delta^{\mathfrak{b}}_{\tau_1 \tau_2, 1} \mathfrak{b} \right] \\ &= \left[k_1 \tau_1(k_2) \mathfrak{a}(\tau_1, \tau_2) \cdot \Delta^{\mathfrak{a}}_{\tau_1 \tau_2, 1} \mathfrak{a} \otimes \mathfrak{b}(\tau_1, \tau_2) \Delta^{\mathfrak{b}}_{\tau_1 \tau_2, 1} \mathfrak{b} \right] \\ &= \left[\Delta^{\mathfrak{a}}_{\tau_1, k_1} \Delta^{\mathfrak{a}}_{\tau_2, k_2} \mathfrak{a} \otimes \Delta^{\mathfrak{b}}_{\tau_1, 1} \Delta^{\mathfrak{b}}_{\tau_2, 1} \mathfrak{b} \right]; \end{aligned}$$

and the right hand side is also equal to

$$\begin{aligned} & \left(\mathbf{k}_{1} \cdot \Delta_{\tau_{1},1}^{\mathfrak{c}}\right) \left[\mathbf{k}_{2} \cdot \Delta_{\tau_{2},1}^{\mathfrak{a}} \mathbf{a} \otimes \Delta_{\tau_{2},1}^{\mathfrak{b}} \mathbf{b}\right] \\ &= \left[\left(\mathbf{k}_{1} \cdot \Delta_{\tau_{1},1}^{\mathfrak{a}}\right) \left(\mathbf{k}_{2} \cdot \Delta_{\tau_{2},1}^{\mathfrak{a}}\right) \mathbf{a} \otimes \Delta_{\tau_{1},1}^{\mathfrak{b}} \Delta_{\tau_{2},1}^{\mathfrak{b}} \mathbf{b}\right] \\ &= \left[\mathbf{k}_{1} \tau_{1}(\mathbf{k}_{2}) \cdot \Delta_{\tau_{1}\tau_{2},\mathfrak{a}(\tau_{1},\tau_{2})}^{\mathfrak{a}} \mathbf{a} \otimes \Delta_{\tau_{1},1}^{\mathfrak{b}} \Delta_{\tau_{2},1}^{\mathfrak{b}} \mathbf{b}\right] \\ &= \left[\left(\mathbf{k}_{1} \cdot \Delta_{\tau_{1},1}^{\mathfrak{a}}\right) \left(\mathbf{k}_{2} \cdot \Delta_{\tau_{2},1}^{\mathfrak{a}}\right) \mathbf{a} \otimes \Delta_{\tau_{1},1}^{\mathfrak{b}} \Delta_{\tau_{2},1}^{\mathfrak{b}} \mathbf{b}\right] \end{aligned}$$

Expanding everything out and checking on the basic elements, we see that for any $x \in (\mathfrak{C}_{\mathfrak{a}} \otimes_{F} \mathfrak{C}_{\mathfrak{b}})^{opp}$, $y \in \mathfrak{C}_{\mathfrak{c}}$ and $z \in M$, $x \cdot y \cdot z = y \cdot x \cdot z$. In another word, we gave M a $(\mathfrak{C}_{\mathfrak{c}}, \mathfrak{C}_{\mathfrak{a}} \otimes_{F} \mathfrak{C}_{\mathfrak{b}})$ -bimodule structure.

Lemma 4.4.30. M is isomorphic to $\mathfrak{C}_{\mathfrak{a}} \otimes_{\mathsf{K}} \mathfrak{C}_{\mathfrak{b}}$ as F-modules.

Proof. The map $M \to \mathfrak{C}_{\mathfrak{a}} \otimes_{\mathsf{K}} \mathfrak{C}_{\mathfrak{b}}$ is obtained by descending the obvious F-linear map $\mathfrak{C}_{\mathfrak{a}} \otimes_{\mathsf{F}} \mathfrak{C}_{\mathfrak{b}} \to \mathfrak{C}_{\mathfrak{a}} \otimes_{\mathsf{K}} \mathfrak{C}_{\mathfrak{b}}$. By universal property of tensor product, there is an additive group homomorphism $\mathfrak{C}_{\mathfrak{a}} \otimes_{\mathsf{K}} \mathfrak{C}_{\mathfrak{b}} \to M$ given by $\mathfrak{a} \otimes \mathfrak{b} \mapsto [\mathfrak{a} \otimes \mathfrak{b}]$, this map is in fact F-linear. The two maps are inverse to each other.

Corollary 4.4.31. The F-dimension of M is equal to $(\dim_F K)^3$, consequently M is a finitely generated $\mathfrak{C}_{\mathfrak{c}}$ -module.

Proof. By lemma 4.4.30, the dimension of M is equal to $\dim_{\mathsf{F}} \mathfrak{C}_{\mathfrak{a}} \otimes_{\mathsf{K}} \mathfrak{C}_{\mathfrak{b}} = \dim_{\mathsf{K}} \mathfrak{C}_{\mathfrak{a}} \otimes_{\mathsf{K}} \mathfrak{C}_{\mathfrak{b}} \dim_{\mathsf{F}} \mathsf{K}$. By lemma 4.4.17, $\dim_{\mathsf{K}} \mathfrak{C}_{\mathfrak{a}} = \dim_{\mathsf{K}} \mathfrak{C}_{\mathfrak{b}} = \dim_{\mathsf{F}} \mathsf{K}$.

Construction 4.4.11. By lemma 2.2.2, there exists some simple $\mathfrak{C}_{\mathfrak{c}}$ -module S such that $\mathfrak{C}_{\mathfrak{c}}$ is isomorphic to $\bigoplus_{i \in J} S$ as $\mathfrak{C}_{\mathfrak{c}}$ -module for some indexing set J. If we give S the F-module structure by pulling back the $\mathfrak{C}_{\mathfrak{c}}$ -module structure, by restricting scalars $\mathfrak{C}_{\mathfrak{c}}$ is isomorphic to $\bigoplus_{i \in J} S$ as F-module as well. Since $\mathfrak{C}_{\mathfrak{c}}$ is a finite dimensional F-vector space, J must be finite as well. Note that S must be a finite dimensional F-vector space, because S is finitely generated as $\mathfrak{C}_{\mathfrak{c}}$ -module and $\mathfrak{C}_{\mathfrak{c}}$ has finite F-dimension. The indexing set J must be nonempty, otherwise $\mathfrak{C}_{\mathfrak{c}}$ being isomorphic to $\bigoplus_{\emptyset} S$ is a trivial ring; but simple rings are non-trivial. Since J is finite, direct sum over J and direct product over J agree. Recall construction 3.1.1 and construction 3.1.2, for all non-zero $\mathfrak{m} \in \mathbb{N}$, we have

$$\operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}}(S^{\mathfrak{m}}) \cong \operatorname{Mat}_{\mathfrak{m}}(\operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}}S)$$

as F-algebras, hence

$$\mathfrak{C}^{\mathsf{opp}}_{\mathfrak{c}} \cong \operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}} \mathfrak{C}_{\mathfrak{c}} \cong \operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}} S^{|J|} \cong \operatorname{Mat}_{|J|} (\operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}} S)$$

as F-algebras. Finally

$$\mathfrak{C}_{\mathfrak{c}}\cong \operatorname{Mat}_{|J|}\left(\operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}}\left(S\right)^{\mathsf{opp}}\right)$$

as F-algebras.

Corollary 4.4.32.

$$(\dim_{\mathsf{F}}\mathsf{K})^2 = |\mathsf{J}|^2 \dim_{\mathsf{F}} \operatorname{End}_{\mathfrak{C}_{\mathsf{F}}}\mathsf{S}$$

Proof. They are both equal to $\dim_F \mathfrak{C}_{\mathfrak{c}}$ by construction 4.4.11.

Corollary 4.4.33.

$$|J|\dim_F S = (\dim_F K)^2$$

Proof. They are all equal to $\dim_F \mathfrak{C}_{\mathfrak{c}} = \dim_F S^{|J|}$ by construction 4.4.11.

Lemma 4.4.34. There exists a $\mathfrak{C}_{\mathfrak{c}}$ -linear isomorphism between M and $S^{|J|\dim_F K}$.

Proof. By lemma 2.2.4, we only need to show that $\dim_F M = \dim_F S^{|J| \dim_F K}$. We already have $\dim_F M = (\dim_F K)^3$ by corollary 4.4.31. We also have $\dim_F S^{|J|\dim_F K} = |J|\dim_F K \dim_F S =$ $\dim_{\mathsf{F}} \mathsf{K} \left(|\mathsf{J}| \dim_{\mathsf{F}} \mathsf{S} \right) = \dim_{\mathsf{F}} \mathsf{K} \left(\dim_{\mathsf{F}} \mathsf{K} \right)^2 \text{ by corollary 4.4.33.}$

Corollary 4.4.35. As F-vector spaces, $M \cong S^{|J| \dim_F K}$.

Proof. Restricting scalars on the $\mathfrak{C}_{\mathfrak{c}}$ -linear isomorphism in lemma 4.4.34

Corollary 4.4.36. As F-algebras, $\operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}} M \cong \operatorname{Mat}_{|J|\dim_{\mathfrak{F}} K}(\operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}} S)$.

Proof. From corollary 4.4.35, we have $\operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}} M \cong \operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}} (S^{|J|\dim_{\mathbb{F}} K})$. By construction 3.1.2, they are isomorphic to $\operatorname{Mat}_{|J|\dim_F K}(\operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}} S)$.

Corollary 4.4.37.

$$\dim_{\mathsf{F}} \operatorname{End}_{\mathfrak{C}_{\mathsf{F}}} \mathsf{M} = (\dim_{\mathsf{F}} \mathsf{K})^4.$$

Proof.

$$\begin{split} \dim_{F} \operatorname{End}_{\mathfrak{C}_{\mathfrak{c}} \mathsf{M}} &= \dim_{F} \operatorname{Mat}_{|J| \dim_{F} \mathsf{K}}(\operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}} \mathsf{S}) \\ &= \dim_{F} \left(\operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}} \mathsf{S} \otimes_{F} \operatorname{Mat}_{|J| \dim_{F} \mathsf{K}}(\mathsf{F}) \right) \\ &= |J|^{2} \left(\dim_{F} \mathsf{K} \right)^{2} \dim_{F} \operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}} \mathsf{S} \\ &= \left(\dim_{F} \mathsf{K} \right)^{2} \left(|J|^{2} \dim_{F} \operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}} \mathsf{S} \right) \\ &= \left(\dim_{F} \mathsf{K} \right)^{2} \left(\dim_{F} \mathsf{K} \right)^{2}, \end{split}$$

where the last equality is by corollary 4.4.32.

Theorem 4.4.38. The cross product $\mathfrak{C}_{\mathfrak{c}}$ and the tensor product $\mathfrak{C}_{\mathfrak{a}} \otimes_F \mathfrak{C}_{\mathfrak{b}}$ are Brauer equivalent.

Proof. We define an F-algebra homomorphism $\phi : (\mathfrak{C}_{\mathfrak{a}} \otimes_F \mathfrak{C}_{\mathfrak{b}})^{opp} \to \operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}} M$ by $x \mapsto (x \cdot \bullet)$. By corollary 4.4.37, both sides has F-dimension $(\dim_F K)^4$, therefore, ϕ is an F-algebra isomorphism by corollary 1.1.8. Hence we have another F-algebra isomorphism by composing the isomorphism in corollary 4.4.36:

$$\varphi^{\mathsf{opp}}: \mathfrak{C}_{\mathfrak{a}} \otimes_{\mathsf{F}} \mathfrak{C}_{\mathfrak{b}} \cong (\operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}} \mathsf{M})^{\mathsf{opp}} \cong \operatorname{Mat}_{|J| \dim_{\mathsf{F}} \mathsf{K}} ((\operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}} \mathsf{S})^{\mathsf{opp}}) \,.$$

In the meantime, by construction 4.4.11, we have $\mathfrak{C}_{\mathfrak{c}} \cong \operatorname{Mat}_{|J|}((\operatorname{End}_{\mathfrak{C}_{\mathfrak{c}}} S) \operatorname{opp})$; hence $\operatorname{Mat}_{\dim_{F} K}(\mathfrak{C}_{\mathfrak{c}})$ is isomorphic to $\mathfrak{C}_{\mathfrak{a}} \otimes_{F} \mathfrak{C}_{\mathfrak{b}}$.

Corollary 4.4.39 (group isomorphism). For a finite dimensional Galois field extension K/F, the relative Brauer group Br(K/F) is isomorphic to the second group cohomology $H^2(Gal(K/F), K^*)$.

Proof. In corollary 4.4.27, we have seen that H^2 and \mathfrak{C} form a bijection, thus it is sufficient to check either one of them preserves multiplication. The function $\mathfrak{C} : H^2(\operatorname{Gal}(K/F), K^*)$ preserves multiplication: let $[\mathfrak{a}], [\mathfrak{b}]$ be two elements in $H^2(\operatorname{Gal}(K/F), K^*)$, by theorem 4.4.38, $\mathfrak{C}(\mathfrak{ab})$ is indeed Brauer equivalent to $\mathfrak{C}(\mathfrak{a}) \otimes_F \mathfrak{C}(\mathfrak{b})$ that is

$$\left[\mathfrak{C}_{\mathfrak{a}}\right]_{\sim_{\mathrm{Br}}}\left[\mathfrak{C}_{\mathfrak{b}}\right]_{\sim_{\mathrm{Br}}}=\left[\mathfrak{C}_{\mathfrak{a}\mathfrak{b}}\right].$$