
Brauer Group and Galois Cohomology

Jujian Zhang Yunzhou Xie

January 22, 2025



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Central Simple Algebras 3
1.1 Basic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Subfields of Central Simple Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Morita Equivalence 7
2.1 Construction of the equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Stacks 074E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Results in Noncommutative Algebra 10
3.1 A Collection of Useful Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Tensor Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Centralizer and Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Some Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Wedderburn-Artin Theorem for Simple Rings . . . . . . . . . . . . . . . . . . . . 12
3.2.1 Classification of Simple Rings . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Uniqueness of the Classification . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Skolem-Noether Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Double Centralizer Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Brauer Group 17
4.1 Construction of Brauer Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Base Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Good Representative Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.2 Conjugation Factors and Conjugation Sequences . . . . . . . . . . . . . . 23

4.4 The Second Galois Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.1 From Br(K/F) to H2 (Gal(K/F), K⋆) . . . . . . . . . . . . . . . . . . . . . . 25
4.4.2 Cross Product as a Central Simple Algebra . . . . . . . . . . . . . . . . . 28

Central Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Simple Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.3 From H2 (Gal(K/F), K⋆) to Br(K/F) . . . . . . . . . . . . . . . . . . . . . . 35
4.4.4 H2 ◦C and C ◦H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.5 Group Homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

C1 = 1 and H2(1) = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1



Cab ∼Br Ca⊗F Cb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Preface
In this exposition, we describe a excruciatingly detailed proof of the following theorem:

Theorem. For a finite dimensional and Galois field extension K/F, the relative Brauer group
Br(K/F) is isomorphic to the second group cohomology H2 (Gal(K/F), K⋆).

The reason for the detailed-ness is because we are aiming to formalise the proof described in the
following chapters; therefore the more details, the better. We apologise for the unconventional
organisation in advance — earlier chapters sometimes use results from later chapter. For our
defence, we try to categorise all the results by topics and, since this is a formalisation project,
we can guarantee the readers that there is no circular reasoning.
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Chapter 1

Central Simple Algebras

1.1 Basic Theory
In this chapter we define central simple algebras. We used some results in section 3.1.

Definition 1.1.1 (Simple Ring). A ring R is simple if the only two-sided-ideals of R are 0 and R.
An algebra is simple if it is simple as a ring.

Remark 1.1.1. Division rings are simple.

Lemma 1.1.2. Let A be a simple ring, then centre of A is a field.

Proof. Let 0 6= x be an element of centre of A. Then I := {xy|y ∈ A} is a two-sided-ideal of A.
Since 0 6= x ∈ I, we have that I = A. Therefore 1 ∈ I, hence x is invertible.

Definition 1.1.2 (Central Algebras). Let R be a ring and A an R-algebra, we say A is central if
and only if the centre of A is R

Remark 1.1.3. Every commutative ring is a central algebra over itself.

Remark 1.1.4. Simpleness is invariant under ring isomorphism and centrality is invariant under
algebra isomorphism.

Lemma 1.1.5. If A is a central R-algerba, Aopp is also central. .

Lemma 1.1.6. R is a simple ring if and only if any ring homomorphism f : R→ S either injective
or S is the trivial ring.

Proof. If R is simple, then the ker f is either {0} or R. The former case implies that f is injective
while the latter case implies that S is the trivial ring. Conversely, let I ⊆ R be a two-sided-ideal.
Consider π : R → R/I, either π is injective implying that I = {0} or that R/I is the trivial ring
implying that I = R.

Remark 1.1.7. If A is a simple R-algebra, “ring homomorphism” in lemma 1.1.6 can be replaced
with R-algebra homomorphism.

Corollary 1.1.8. Assume R is a field. Let A,B be finite dimensional R-algebras where A is simple
as well. Then any R-algebra homomorphism f : A→ B is bijective if dimR A = dimR B.
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Proof. By lemma 1.1.6, fis injective. Then dimK im f = dimK B − dimK ker f = dimK B meaning
that f is surjective.

Let K be a field and A,B be K-algebras.

Lemma 1.1.9. If A and B are central K-algebras, A⊗K B is a central K-algebra as well.

Proof. Assume A and B are central algebras, then by corollary 3.1.7 Z (A⊗R B) = Z (A) ⊗R

Z (B) = R⊗R R = R.

Theorem 1.1.10. If A is a simple K-algebra and B is a central simple K-algebra, A ⊗K B is a
central simple K-algebra as well.

Proof. By lemma 1.1.9, we need to prove A ⊗K B is a simple ring. Denote f as the map A →
A⊗KB. It is sufficient to prove that for every two-sided-ideal I ⊆ A⊗KB, we have I =

〈
f
(
f−1 (I)

)〉
.

Indeed, since A is simple f−1 (I) is either {0} or A, if it is {0}, then I = {0}; if it is A, then I is A

as well.
We will prove that I ⩽

〈
f
(
f−1 (I)

)〉
, the other direction is straightforward. Without loss of

generality assume I 6= {0}. Let A be an arbitrary basis of A, by lemma 3.1.1, we see that every
element x ∈ A⊗K B can be written as

∑n
i=0 Ai⊗bi for some natrual number n and some choice

of bi ∈ B and Ai ∈ A. Since I is not empty, we see there exists a non-zero element ω ∈ I

such that its expansion
∑n

i=0 Ai ⊗ bi has the minimal n. In particular, all bi are non-zero and
n 6= 0. We have ω = A0 ⊗ b0 +

∑n
i=1 Ai ⊗ bi. Since B is simple, 1 ∈ B = 〈〈b0〉; hence we write

1 ∈
∑m

j=0 xib0yi for some xi, yi ∈ B. Define Ω :=
∑m

j=0(1⊗ xi)ω(1⊗ yi) which is also in I. We
write

Ω = A0 ⊗

 m∑
j=0

xjb0yj

+

n∑
i=1

Ai ⊗

 m∑
j=0

xjbiyj


= A0 ⊗ 1+

n∑
i=1

Ai ⊗

 m∑
j=0

xjbiyj


For every β ∈ B, we have that (1⊗ β)Ω−Ω (1⊗ β) is in I and is equal to

n∑
i=1

Ai ⊗

 m∑
j=0

βxjbiyj − xjbiyjβ

 ,

which is an expansion of n− 1 terms, thus (1⊗ β)Ω−Ω (1⊗ β) must be 0. Hence we conclude
that for all i = 1, . . . , n,

∑m
j=0 xjbiyj ∈ Z (B) = K. Hence for all i = 1, . . . , n, we find a κi ∈ K

such that κi =
∑m

j=0 xjbiyj. Hence we can calculate Ω as

Ω = A0 ⊗ 1+

n∑
i=1

Ai ⊗

 m∑
j=0


= A0 ⊗ 1+

n∑
i=1

Ai ⊗ κi

=

(
A0 +

n∑
i=1

κi ·Ai

)
⊗ 1

.
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From this, we note that A0 +
∑n

i κi · Ai ∈ f−1 (I); since A is simple, we immediately conclude
that f−1 (I) = A, once we know A0 +

∑n
i=1 κi ·Ai is not zero. If it is zero, by the fact that A is

a linearly independent set, we conclude that 1, κ1, . . . , κn are all zero; which is a contradiction.
Since f−1 (I) = A, we know

〈
f
(
f−1I

)〉
= A⊗K B.

Corollary 1.1.11. Central simple algebras are stable under base change. That is, if L/K is a field
extension and D is a central simple algebra over K, then L⊗K D is central simple over L.

Proof. By theorem 1.1.10, L ⊗K D is simple. Let x ∈ Z (L⊗K D), by corollary 3.1.7, we have
x ∈ Z (L) ⊗ Z (D) = Z (L). Without loss of generality, we can assume that x = l ⊗ d is a pure
tensor, then l ∈ Z (L) and d ∈ K. Therefore x = d · l ∈ L.

Theorem 1.1.12. If A⊗K B is a simple ring, then A and B are both simple.

Proof. By symmetry, we only prove that A is simple. If A or B is the trivial ring then A⊗K B is
the trivial ring, a contradiction. Thus we assume both A and B are non-trivial. Suppose A is not
simple, by lemma 1.1.6, there exists a non-trivial K-algebra A ′ and a K-algebra homomorphism
f : A→ A ′ such that ker f 6= {0}. Let F : A⊗K B→ A ′ ⊗K B be the base change of f, then since
A⊗K B is simple and A ′ ⊗ B is non-trivial (A ′ is non-trivial and B is faithfully flat because B is
free), we conclude that F is injective. Then we have that

0 A⊗K B A ′ ⊗K B
0 F

is exact. Since B is faithfully flat as a K-module, tensorig with B reflects exact sequences, therefore

0 A A ′0 f

is exact as well. This is contradiction since f is not injective.

1.2 Subfields of Central Simple Algebras
Definition 1.2.1 (Subfield). For any field K and K-algebra A, a subfield B ⊆ A is a commutative
K-subalgebra of A that is closed under inverse for any non-zero member.

Remark 1.2.1. Subfields inherit a natural ordering from subalgebras.

Let K be any field and D a finite dimensional central division K-algebra and A a finite
dimensional central simple algebra of A.

Lemma 1.2.2. Let k be a maximal subfield of D,

dimK D = (dimK k)2.

Proof. By lemma 3.4.11, we have that dimK D = dimK CD(k) · dimK k. Hence it is sufficient to
show that CD(k) = k. By the commutativity of k, we have that k ⩽ CD(k). Suppose k 6= CD(k):
let a ∈ CD(k) that is not in k. We see that L := k(a) is another subalgebra of D that is strictly
larger than k; a contradiction. Therefore k = CD(k) and the theorem is proved.

Lemma 1.2.3. Suppose L is a subfield of A, the following are equivalent:

1. L = CA(L)
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2. dimK A = (dimK L)2

3. for any commutative K-subalgebra L ′ ⊆ A, L ⊆ L ′ implies L = L ′

Proof. We prove the following:

• “1. implies 2.”: this is lemma 3.4.11.

• “2. implies 1.”: Since L is commutative, we always have L ⊆ CA(L). Hence we only
need to show dimK L = dimK CA(L). This is because by lemma 3.4.11, we have that
dimK A = dimK L · dimK CA(L) and by 2. we have dimK L · dimK CA(L) = dimK L · dimK L.

• “2. implies 3.”: Since 2. implies 1., we assume L = CA(L), therefore all we need is to prove
L ′ ⊆ CA(L). Let x ∈ L ′ and y ∈ L ⊆ L ′, we need to show xy = yx which is commutativity
of L ′.

• “3. implies 1.”: By commutativity of L, we always have L ⊆ CA(L). For the other direction,
suppose CA(L) 6⊆ L, then there exists some a ∈ CA(L) but not in L. Consider L ′ = L(a),
by 3., we have L ′ = L which is a contradiction.
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Chapter 2

Morita Equivalence

This chapter intertwine with section 3.2: section 2.2 depends on section 3.2.1; while section 3.2.2
depends on section 2.2.

2.1 Construction of the equivalence
Let R be a ring and 0 6= n ∈ N. In this chapter, we prove that the category R-modules and
the category of Matn(R)-modules are equivalent. Then we use the equivalence to prove several
useful lemmas.

Construction 2.1.1. If M is an R-module, we have a natural Matn(R)-module structure on M̂ :=

Mn given by (mij) · (vk) =
∑

j mij · vj. If f : M → N is an R-linear map, then f̂ : Mn → Nn

given by (vi) 7→ (f(vi)) is a Matn(R)-linear map. Thus we have a well-defined functor ModR =⇒
ModMatn(R).

Remark 2.1.1. Note that all modules are assumed to be left modules; when we need to consider
right R-modules, we will consider left Ropp-modules instead. We use δij to denote the matrix
whose (i, j)-th entry is 1 and 0 elsewhere. δij forms a basis for matrices.

Construction 2.1.2. If M is a Matn(R)-module, then M̃ := {δij ·m|m ∈M} ⊆M is an R-module
whose R-action is given by r · (δij ·m) := (r · δij) ·m. More over if f : M → N is a Matn(R)-
linear map, f̃ : M̃ → Ñ given by the restriction of f is R-linear. Hence, we have a functor
ModMatn(R) =⇒ModR.

Theorem 2.1.2 (Morita Equivalence). The functors constructed in construction 2.1.1 and con-
struction 2.1.2 form an equivalence of category.

Proof. Let M be an R-module, then the unit ˜̂M ∼= M is given by

x 7→
∑
j

xj

(x, 0, . . . , 0)← [ x
Let M be an Matn(R)-module, then the counit ̂̃M ∼= M is given by m 7→ (δi0 ·m). This map

is both injective and surjective.
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2.2 Stacks 074E
Let A be a finite dimensional simple k-algebra.

Lemma 2.2.1. Let M and N be simple A-modules, then M and N are isomorphic as A-modules.

Proof. By theorem 3.2.6, there exists non-zero n ∈ N, k-division algebra D such that A ∼=

Matn(D) as k-algebras. Then by theorem 2.1.2, we have equivalence of category e : ModA ∼=

ModD. Since simple module is a categorical notion (it can be defined in terms monomorphisms),
e(M) and e(N) are simple D-modules. Since D is a division ring, e(M) and e(N) are isomorphic
as D-modules, therefore M and N are isomorphic as A-modules.

Lemma 2.2.2. Let M be an A-module, there exists a simple A-module S such that M is a direct
sum of copies of S, i.e. M ∼=

⊕
i∈ι S for some indexing set ι.

Proof. By theorem 3.2.6, there exists non-zero n ∈ N, k-division algebra D such that A ∼=

Matn(D) as k-algebras. Then by theorem 2.1.2, we have equivalence of category e : ModA ∼=

ModD. Since simple module is a categorical notion (it can be defined in terms monomorphisms),
e−1(D) is a simple module over A. Since e(M) is a free module over D, we can write e(M)

as
⊕

i∈ι D for some indexing set ι. By precomposing the unit of e, we get an isomorphism
M ∼= e−1

(⊕
i∈ι D

)
. We only need to prove e−1

(⊕
i∈ι D

)
∼=
⊕

i∈ι e
−1 (D). This is because

direct sum is the categorical coproduct.

Remark 2.2.3. Note that by lemma 2.2.1, any two simple A-module are isomorphic, hence for
any A-module M and any simple A-module S, we can write M as a direct sum of copies of S.

Lemma 2.2.4. Let M and N be two finite A-module with compatible k-action. Then M and N

are isomorphic as A-module if and only if dimk M and dimk N are equal.

Proof. The forward direction is trivial as an A-linear isomorphism is a k-linear isomorphism as
well. Conversely, suppose dimk M = dimk N. By lemma 2.2.2, there exists a simple A-module
S such that M ∼=

⊕
i∈ι S and N ∼=

⊕
i∈ι′ S as A-modules. Without loss of generality S 6= 0, for

otherwise we have M ∼= N anyway. If either of ι or ι ′ is empty, then dimk M = dimk N = 0

implying that M = N = 0, we again have M ∼= N. Thus, we assume both ι and ι ′ are non-
empty. By pulling back the A-module structure on S to a k-module structure along k ↪→ A,
M,N, S,

⊕
i∈ι S,

⊕
i∈ι′ S are all finite dimensional k-vector spaces. Hence ι and ι ′ are finite. The

equality dimk M = dimk N tells us that ι ∼= ι ′ as set, hence M ∼=
⊕

i∈ι S
∼=
⊕

i∈ι′ S
∼= N as

required.

Let A ∼= Matn(D) as k-algebras for some k-division algebra and n 6= 0.

Lemma 2.2.5. Dn is a simple A-module where the module structure is given by pulling back the
Matn(D)-module structure of Dn.

Proof. By theorem 2.1.2, we have ModA ∼= ModD ∼= ModMatn(D). Since D is a simple D-module,
Dn is a simple Matn(D) module and consequently, a simple A-module.

Remark 2.2.6. Note that any A-linear endomorphism of Dn is Matn(D)-linear, and vice versa.
Thus we have EndA (Dn) ∼= EndMatn(D) (D

n) as k-algebras.

Lemma 2.2.7. EndA (Dn) is isomorphic to Dopp as k-algebras.
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Proof. Indeed, we calculate:

EndA (Dn) ∼= EndMatn(D) (D
n)

∼= EndD D by theorem 2.1.2, ModD ∼= ModMatn D

∼= Dopp

Lemma 2.2.8. Let M be a simple A-module, then EndA M ∼= Dopp as k-algebras.

Proof. By theorem 2.1.2, Dn is simple as A-module; hence by lemma 2.2.1, Dn and M are
isomorphic as A-module. Lemma 2.2.7 gives the desired result.

Remark 2.2.9. In particular, if M is a simple A-module, then EndA M is a simple k-algbera.

Lemma 2.2.10. Let M be a simple A-module, then EndA M has finite k-dimension.

Proof. By theorem 3.2.4, such D and n always exists. Hence we only need to show Dopp has
finite k-dimension. Since dimk A = dimk Matn(D) are both finite, we conclude Dopp is finite as
a k-vector space by pulling back the finiteness along D ↪→ Matn(D).

Remark 2.2.11. Note that for all A-module M, EndEndA M M is a k-algebra as well, with k ↪→
EndEndA M M given by a 7→ (x 7→ a · x). Thus, we always have a k-algebra homomorphism
A→ EndEndA M M given by the A-action on M. When A is a simple ring, this map is injective.

Definition 2.2.1 (Balanced Module). For any ring A and A-module M, we say M is a balanced
A-module, if the A-linear map A→ EndEndA M M is surjective.

Remark 2.2.12. Balancedness is invariant under linear isomorphism.

Lemma 2.2.13. For any ring A, A is balanced as A-module.

Proof. If f ∈ EndEndA M A, then the image of f(1) under A→ EndEndA
A is f again.

We assume again that A is a finite dimensional simple k-algebra.

Lemma 2.2.14. Any simple A-module is balanced.

Proof. Indeed, if M is a simple A-module, then A ∼=
⊕

i∈ι M for some indexing set ι by lemma 2.2.2.
Since A is balanced,

⊕
i∈ι M is balanced. Let g ∈ EndEndA M M, we can define a corresponding

G ∈ EndEnd⊕
i M

(
⊕

i M) by sending (vi) to (g(vi)). Since
⊕

i M is balanced, we know that for
some a ∈ A, G is the image of a under A → EndEnd⊕

i M
(
⊕

i M). Then the image of a under
A→ EndEndA M M is g.

Lemma 2.2.15. For any simple A-module M, we have A ∼= EndEndA M M as k-algebras.

Proof. The canonical map A→ EndEndA M M is both injective and surjective, as M is a balanced
A-module and A is a simple ring.

9



Chapter 3

Results in Noncommutative Algebra

3.1 A Collection of Useful Lemmas
In section, we collect some lemmas that does not really belong to anywhere.

3.1.1 Tensor Product
Lemma 3.1.1. Let M and N be R-modules such that Ci∈ι is a basis for N, then every elements of
x ∈M⊗RN can be uniquely written as

∑
i∈ι mi⊗Ci where only finitely many mi’s are non-zero

Proof. Given the basis C, we have R-linear isomorphism N ∼=
⊕

i∈ι R, hence M⊗RN ∼=
⊕

i∈ι(M⊗R

R) ∼=
⊕

i∈ι M as R-modules.

By switching M and N, the symmetric statement goes without saying.

Lemma 3.1.2. Let K be a field, M and N be flat K-modules. Suppose p ⊆ M and q ⊆ N are
K-submodules, then (p⊗K N) u (M⊗K q) = p⊗K q as K-submodules.

Proof. The hard direction is to show (p ⊗R N) u (M ⊗R q) ⩽ p ⊗R q. Consider the following
diagram:

p⊗K q M⊗K q M/p ⊗K q

p⊗K N M⊗K N M/p ⊗K N

u

α

v

β γ

u′ v′

Since M/p is flat, γ is injective. Let z ∈ (p ⊗R N) u (M ⊗R q) = imβ u imu ′. By abusing
notation, replace z with some elements of M⊗K q and continue with β(z) ∈ imβ u imu ′. Since
v ′(β(z)) = γ(v(z)) and that β(z) ∈ imu ′, we conclude that γ(v(z)) = 0, that is z ∈ ker v = imu.
We abuse notation again, let z ∈ p⊗Kq, we need to show β(u(z)) ∈ imβuimu ′, but β◦u = u ′◦α,
we finish the proof.
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3.1.2 Centralizer and Center
Let R be a commutative ring and A, B be two R-algebras. We denote centralizer of S ⊆ A by
CAS and centre of A by Z(A).

Lemma 3.1.3. Let S, T be two subalgebras of A, then CA(S t T) = CA(S) u CA(T).

This lemma can be generalized to centralizers of arbitrary supremum of subalgebras.

Lemma 3.1.4. If we assume B is free as R-module, then for any R-subalgebra S, we have that
CA⊗RB (im (S→ A⊗R B)) is CA(S)⊗R B

A symmetric statement goes without saying.

Proof. Let w ∈ CA⊗RB (im (S→ A⊗R B)). Since B is free, we choose an arbitrary basis B;
by lemma 3.1.1, we write w =

∑
i mi ⊗K Bi. It is sufficient to show that mi ∈ CA(S) for all i.

Let a ∈ S, we need to show that mi·a = a·mi. Since w is in the centralizer, w·(a⊗1) = (a⊗1)·w.
Hence we have

∑
i(a·mi)⊗Bi =

∑
i(mi ·a)⊗Bi. By the uniqueness of lemma 3.1.1, we conclude

a ·mi = mi · a.

Remark 3.1.5. A useful special case is when S = A, then since CA(A) = Z(A), we have
CA⊗RB (im (A→ A⊗R B)) is equal to Z(A)⊗RB. Since im (R⊗R B→ A⊗R B) = im (A→ A⊗R B),
we conclude its centralizer in A⊗R B is Z(A)⊗R B.

Corollary 3.1.6. Assume R is a field. Let S and T be R-subalgebras of A and B respectively. Then
CA⊗RB (S⊗R T) is equal to CA(S)⊗R CB(T)

Proof. From lemma 3.1.2, CA(S) ⊗R CB(T) is equal to (CA(S)⊗R B) u (A⊗R CB(T)). The left
hand side CA(S)⊗R B is equal to CA⊗RB (im (S→ A⊗R B)) and the right hand side is equal to
CA⊗RB (im (T → A⊗R B)). Hence by lemma 3.1.3, their intersection is equal to

CA⊗RB (im (S→ A⊗R B) t im (T → A⊗R B))

This is precisely CA⊗RB (S⊗R T).

Corollary 3.1.7. Assume R is a field. The centre of A⊗R B is Z (A)⊗R Z (B).

Proof. Special case of corollary 3.1.6.

3.1.3 Some Isomorphisms
Construction 3.1.1. Let R be a commutative ring and A an R-algebra. Then we have an R-algebra
homomorphism A ⊗R Aopp ∼= EndR A given by a ⊗ 1 7→ (a · •) and 1 ⊗ a 7→ (• · a). When R

is a field and A is a finite dimensional central simple algebra, this morphism is an isomorphism
by corollary 1.1.8.

Construction 3.1.2. Let A be an R-algebra and M an A-module. We have isomorphism EndA (Mn) ∼=

Matn (EndA M) as R-algebras. For any f ∈ EndA (Mn), we define a matrix M whose (i, j)-th
entry is

x 7→ f (0, . . . , x, . . . , 0)i ,

11



where x is at the j-th position. On the other hand, if M ∈ Matn (EndA M), we define an A-linear
map f : Mn →Mn by

v 7→

∑
j

Mijvj


i

.

Construction 3.1.3. Let A be an R-algebra. Then Matm (Matn(A)) ∼= Matmn(A). The trick is
to think Matm A as {0, . . . ,m− 1}× {0, . . . ,m− 1}→ A. Since the indexing set {0, . . . ,mn− 1}

bijects with ({0, . . . ,m− 1}× {0, . . . , n− 1}), the isomorphism is just function currying, function
uncurrying, precomposing and postcomposing bijections.

Construction 3.1.4. Let A,B be R-algebras. Then Matmn (A⊗R B) ∼= Matm(A) ⊗R Matn B as
K-algebras. We first construct R-algebra isomorphism A⊗R Matn(R) ∼= Matn(A):

a⊗ 1 7→ diaga and 1⊗ (mij) 7→ (mij)∑
i,j

mij ⊗ δij ←[ (mij),

where diag is the diagonal matrix and δij the matrix whose only non-zero entry is at (i, j)-th and
is equal to 1. Thus Matm(A)⊗R Matn(B) ∼= (A⊗R B)⊗R (Matm(R)⊗R Matn(R)) as R-algebra.
The Kronecker product gives us an R-algebra map Matm(R)⊗RMatn(R)→ Matmn(R). We want
this map to be an isomorphism. By lemma 1.1.6, we only need to prove it to be surjective: for all
δij ∈ Matmn(R), we interpret Matmn(R) as a function {0, . . . ,m− 1}× {0, . . . , n− 1}→ R, then
δij is the image of δab ⊗ δcd ∈ Matm(R)⊗R Matn(R) where i = (a, c) and j = (b, d). Combine
everything together, we see Matmn (A⊗R B) is isomorphic to Matmn (A⊗R B) as R-algebras.

3.2 Wedderburn-Artin Theorem for Simple Rings

3.2.1 Classification of Simple Rings
Lemma 3.2.1 (minimal ideal of simple rings). Let A be a ring and I a non-trivial minimal left
ideal of A, then I is a simple A-module.

Proof. Let J ⩽ I be an A-submodule of I, suppose J is non-trivial, we prove that J = I. Then the
image J ′ of J under I ↪→ A is a non-trivial left ideal of A. Since I ↪→ A is injective, it is sufficient
to prove that J ′ = I. This is because J ′ ⩽ I and J ′ 6< J.

Lemma 3.2.2. Let A be a simple ring and I a non-trivial left ideal. One can write 1 ∈ A as∑n
i=0 xiyi for some xi ∈ I and yi ∈ A.

Proof. Let I ′ be the two-sided ideal spanned by I. Then since A is a simple ring, I ′ = A. Thus
1 ∈ I ′. One can write 1 ∈ A as

∑
i aixibi for some xi ∈ I and ai, bi ∈ A, since I is a left ideal

aixi ∈ I as well.

Now, we can find the smallest n such that 1 ∈ A can be written as
∑n

i=0 xiyi for some xi ∈ I

and yi ∈ A. Let us fix the notations n, xi and yi

Lemma 3.2.3. The n, xi and yi are all non-zero.
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Proof. If n is 0, then 1 = 0 in A, but all simple rings are non-trivial. We argue by contradiction
to prove that all xi and yi are non-zero. Assume there exists a j such that yj 6= 0 implies xj = 0.
Without loss of generality, we assume j = 0. Then 1 =

∑n
i=0 xiyi =

∑n
i=1 xiyi. This contradicts

the minimality of n.

Theorem 3.2.4 (Wedderburn). Let A be a simple ring and I a non-trivial minimal left ideal.
Then there exists a non-zero n ∈ N such that A ∼= In as A-modules.

Proof. We continue to write 1 =
∑n

i=0 xiyi in the shortest possible manner. Then we can define
an A-linear map g : In → A by (vi) 7→

∑
viyi. Then g is surjective: if a ∈ A, then (axi) is

mapped to a under g. g is injective as well: support g(vi) = 0 =
∑

i viyi with (vi) not all
zero. Without loss of generality, we assume v0 6= 0, then the ideal 〈v0〉 is equal to I (since I

is simplelemma 3.2.1). Thus x0 ∈ I = 〈v0〉; implying that x0 = r · v0 for some r ∈ A. Thus
1 = 1−r·0 =

∑n
i=0 xiyi−

∑n
i=0 r·viyi. In this way, we cancelled the term at i = 0, contradicting

the minimality of n. Hence g is an isomorphism.

Theorem 3.2.5 (Wedderburn-Artin (Ideal)). Let A be an Artinian simple ring. There exists a
non-zero n and an ideal I ⊆ A such that I is simple as an A-module and A ∼= In as A-module.

Proof. By theorem 3.2.4, we only need a minimal left ideal. Since A is Artinian, such ideal
exists.

Theorem 3.2.6 (Wedderburn-Artin (Algebra)). Let K be a field and B an finite dimensional simple
algebra over K. There exists a non-zero n ∈ N and a division K-algebra S such that B ∼= Matn(S).

Proof. By theorem 3.2.5, we can find a n and a minimal left ideal I such A ∼= In as A-modules.
Note that (EndB I)opp is a division ring. Then since Bopp ∼= EndB B ∼= EndB(I

n) ∼= Matn (EndB I)

as rings where the final isomorphism is from construction 3.1.2, we have e : B ∼= Matn (EndB I)opp

as rings. We also have a K-algebra structure on (EndB I)opp given by (a · f)(x) = f(a · x), and
this algebra structure promotes the ring isomorphism e to a k-algebra isomorphism.

3.2.2 Uniqueness of the Classification
In the previous section, we know that finite dimensional simple K-algebra B over is in fact a
matrix algebras of a division K-algebra S. In this section, we prove that the division algebra S is
essentially unique.

Theorem 3.2.7 (Uniqueness of Wedderburn-Artin theorem). Let B be a finite-dimensional simple
K-algebra. Suppose B is isomorphic as k-algebras to both Matn(D) and Matn′(D ′) where n,n ′

are non-zero natural numbers and D,D ′ are k-division algebra, then n = n ′ and D ∼= D ′ as
k-algebras.

Proof. Since Dn is a simple B-module, by lemma 2.2.8, we see that EndA Dn ∼= Dopp and
EndA Dn ∼= D ′opp as k-algebras. Thus Dopp ∼= D ′opp as k-algebras, consequently D ∼= D ′ as
k-algebras as well. Since A ∼= Matn(D) ∼= Matn′(D ′) ∼= Matn′(D) as k-algebras and A is finite
k-dimensional, a dimension argument shows that n = n ′.
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3.3 Skolem-Noether Theorem
Let K be a field, A, B be K-algebras where A is central simple and finite K-dimensional and B is
simple. Let M be a simple A-module.

Construction 3.3.1. For any K-algebra homomorphism f : B → A, we give M a B ⊗K EndA M-
module structure by defining (b⊗ l) ·m to be f(b) · l(m). To emphasis f, we denote M with the
B⊗K EndA M-module structure by Mf.

Lemma 3.3.1. Let f : B → A be a K-algebra homomorphism, Mf is finitely generated as a
B⊗K EndA M-module.

Proof. Since M is a finite A-module and A a finite dimensional K-vector space, M is a finite
dimensional K-vector space as well. Suppose S ⊆M generates M as K-module, the claim is that
S generates Mf as well. Let x ∈Mf, we write x =

∑
i λi · si with λi ∈ K and si ∈ S. Note that

λi · si = (ρ(λi)⊗ 1M) in Mf where ρ : K→ B is the map giving B its K-algebra structure. Hence
x is in the span of S in Mf as well.

Remark 3.3.2. Given that B is simple, any k-algebra homomorphism f : B→ A injective; therefore
by finite K-dimensionality of A, B is finite K-dimensional as well.

Lemma 3.3.3. Let f, g : B → A be two K-algebra homomorphisms. Then Mf and Mg are
isomorphic as B⊗K EndA M-module.

Proof. By lemma 2.2.4, it is sufficient to prove dimK Mf = dimK Mg. But as K-vector space,
Mf and Mg are literally M.

Theorem 3.3.4 (Skolem-Noether). Let f, g : B → A be two K-algebra homomorphism. Then f

and g differ only by a conjugation. That is there exists a unit x ∈ A× such that g = xfx−1.

Proof. Let M be any simple A-module (which exists by lemma 2.2.5). By lemma 3.3.3, we have
some isomorphism ϕ : Mf ∼= Mg as B⊗KEndA M-module. Since M is simple, we have that M is a
balanced A-module by lemma 2.2.15. Let e denote the k-algerba isomorphism A ∼= EndEndA M M

given by the A-action on M. Since both ϕ and ϕ−1 defines an element of EndEndA M M, we
define a := e−1(ϕ) and b := e−1(ϕ−1). Then ab = 1 since e(ab) = e(a) · e(b) = ϕϕ−1 = 1.
We prove that the image of f and afb under e are the same; that is for all x ∈ B and m ∈ M,
e(g(x))(m) = e(af(x)b)(m). The right hand side is equal to

e(af(x)b)(m) = (e(a) ◦ e(f(x)) ◦ e(b)) (m)

=
(
ϕ ◦ e(f(x)) ◦ ϕ−1

)
(m)

= ϕ
(
f(x) · ϕ−1(m)

) .

Similarly, the left hand side is equal to g(x) ·m. Note that ϕ is B ⊗ EndA M-linear. Therefore
ϕ
(
(x⊗ 1) · ϕ−1(m)

)
= (x⊗ 1) ·m. Unfolding the definition of Mf and Mg, we see this is saying

precisely ϕ
(
f(x) · ϕ−1(m)

)
= g(x) ·m.
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3.4 Double Centralizer Theorem
In this section let F be a field and A an F-algebra. Define LA ⊆ EndF A to be

{f : A→ A|f(x) = ax for some a ∈ A} ,

i.e. F-linear maps defined by left multiplication; similarly define RA. Note that LA and RA are
F-subalgebras of EndF A. When we need to stree the underlying field is F, we also write LF

A and
RF

A. We assume A to be a finite dimensional central simple F-algebra.

Lemma 3.4.1. The centralizer of LA in EndF A is smaller than or equal to RA:

CEndF A (LA) ⩽ RA.

Proof. Indeed, let x ∈ CEndF A (LA). Recall from construction 3.1.1 that e : A⊗FA
opp ∼= EndF A

as F-algebras. Then e−1(x) is in CA⊗FAopp (im (A→ A⊗F A
opp)) (for e sends a ⊗ 1 to the F-

linear map (a · •)). Since CA⊗FAopp (im (A→ A⊗F A
opp)) = Z(A) ⊗F Aopp = F ⊗F Aopp =

im (Aopp → A⊗F A
opp), we find some y ∈ Aopp such that 1⊗y = e−1(x). Therefore e (1⊗ y) = x;

but e (1⊗ y) is in RA for it is the linear map (• · y).

Remark 3.4.2. For any F-algebra B, every element in CEndF B (LB) is in fact Z(B)-linear. Let
x ∈ CEndF B (LB), z ∈ Z(B) and b ∈ B, we have x(z · b) = z · x(b) because x commutes with the
linear map (z · •).

Remark 3.4.3. A is a Z(A)-algebra whose algebra structure is given by Z(A) ↪→ A. By lemma 1.1.2,
Z(A) is a field. A is finite dimensional as a Z(A)-module because of the tower A/Z(A)/F.

Lemma 3.4.4. As F-algebras, we have RA
∼= Aopp.

Proof. We prove the map Aopp → RA is bijective. It is injective because if (• · a) = (• · b), then
a = 1 · a = 1 · b = b. The map is surjective by the definition of RA.

Lemma 3.4.5. Let B be any simple F-algebra (not necessarily central). The centralizer of LB in
EndF B is equal to RB.

Proof. It is straightforward to show RF
B ⩽ CEndF A

(
LF

B

)
. So we only need to prove CEndF A

(
LF

B

)
⩽

RF
B. By lemma 3.4.1, since B is a central simple finite dimensional Z(B)-algebra, we have that

CEndZ(B) B

(
L

Z(B)
B

)
⩽ R

Z(B)
B .

Suppose f ∈ EndF B is in CEndF BB, by remark 3.4.2, f is Z(B)-linear as well. Then f is in R
Z(B)
B ;

that is f is equal to (• · b) for some b ∈ B as Z(B)-linear maps. Then f is also equal to (• · b) as
F-linear maps.

Construction 3.4.1. Let B be any F-algebra and S ⊆ B an F-subalgebra. For any x ∈ B×, we
have that xSx−1 := {xsx−1|s ∈ S} is an F-subalgebra of B as well. We have the obvious F-algebra
isomorphism S ∼= xSx−1 given by s 7→ xsx−1 and x−1tx ←[ t. Therefore dimF S = dimF xSx

−1

and S is a simple ring if and only if xSx−1 is a simple ring.

Lemma 3.4.6. Let B be any F-algebra, x ∈ B× and S ⊆ B be an F-subalgebra of B, then
CB(xSx

−1) = x (CB(S)) x
−1.
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Proof. If a ∈ CB

(
xSx−1

)
, then x−1ax is in CB(S). Conversely if a is equal to xbx−1 with

b ∈ CB(S), then it is in CB

(
xSx−1

)
as well.

Remark 3.4.7. For any finite dimensional F-module B, we have isomorphism EndF B ∼= MatdimF B F

as F-algebras. Hence EndF B is a finite-dimensional central simple algebra over F.

Lemma 3.4.8. Let S ⊆ A be a simple F-subalgebra, then A⊗F RS is a simple ring.

Proof. By lemma 3.4.4, we have A⊗RS
∼= A⊗ Sopp as F-algebras. The claim follows from theo-

rem 1.1.10.

Lemma 3.4.9. Let S ⊆ A be a simple F-subalgebra, then there exists an x ∈ (A⊗F EndF S)
×

such that CA(S)⊗F EndF S is isomorphic to x (A⊗F RS) x
−1 as F-algebras.

Proof. By lemma 1.1.9 and theorem 1.1.10, A ⊗F CA(S) is a central simple F-algebra. Let
f : S→ A⊗FEndF S be an F-algebra homomorphism defined by s 7→ s⊗1S and g : S→ A⊗FEndF S

be an F-algebra homomorphism defined by 1A ⊗ (s · •). Then by theorem 3.3.4, we that there
exists some x ∈ (A⊗F EndF S)

× such that f = xgx−1. Then we have S ⊗F EndF S is equal to
x (A⊗F LS) x

−1: indeed the left hand side is im f while the right handside is x (img) x−1. There-
fore CA⊗FEndF S (S⊗F EndF S) = CA⊗FEndF S

(
x (A⊗F RS) x

−1
)
. By lemma 3.4.6, the right hand

side is equal to xCA⊗FEndF S (A⊗F LS) x
−1 which is x (A⊗F CEndF S (LS)) x

−1 by lemma 3.1.4
which is x (A⊗F RS) x

−1 by lemma 3.4.5.

Lemma 3.4.10. Let S ⊆ A be a simple F-subalgebra, then CA(S) is simple as well.

Proof. By lemma 3.4.9, CA(S)⊗F EndF S is isomorphic to x (A⊗F RS) x
−1 as F-algebras. Then

C(S)⊗F EndF S is simple since A⊗F RS is simple by lemma 3.4.8. By theorem 1.1.12, CA(S) is
simple.

Lemma 3.4.11. Let S ⊆ A be a simple F-subalgebra. Then

dimF CA(S) · dimF S = dimF A.

Proof. By lemma 3.4.9, CA(S)⊗F EndF S is isomorphic to x (A⊗F RS) x
−1 as F-algebras. Hence

dimF (CA(S)⊗F EndF S) = dimF (A⊗F RS) where the left hand side is dimF CA(S) · dimF EndF S

and the right hand side is dimF A · dimF RS. Since dimF EndF S = dimF S
2 and dimF RS = dimS

(by lemma 3.4.4), we proved this lemma.

Corollary 3.4.12. Let S ⊆ A be a central simple F-subalgebra,

A ∼= B⊗F CA(B).

Proof. By lemma 3.4.10, CA(B) is simple and by theorem 1.1.10, B ⊗F CA(B) is simple. Hence
the map B ⊗F CA(B) → A induced by B ↪→ A and CA(B) ↪→ A is injective. By corollary 1.1.8,
we only need to show dimF B⊗F CA(B) = dimF A which is precisely lemma 3.4.11.

Theorem 3.4.13 (Double Centralizer). Let S ⊆ A be a simple F-subalgebra, we have

CA (CA(S)) = S.

Proof. It is straightforward that S ⩽ CA (CA(S)). By lemma 3.4.10, CA(S) is simple, hence
dimF CA (CA(S))·dimF CA(S) = dimF A = dimF CA(S)·dimF S (by applying lemma 3.4.11 twice),
i.e. dimF CA (CA(S)) = dimF S. This equality of dimension gives us the desired result.
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Chapter 4

Brauer Group

4.1 Construction of Brauer Group
Let K be a field. We denote the class of finite dimensional central simple K-algebras as CSAK.
When K is clear, we drop the subscript.

Remark 4.1.1. By lemma 1.1.9 and theorem 1.1.10, CSA is closed under tensor product, that is if
A,B ∈ CSA, we have A⊗K B ∈ CSA as well.

Definition 4.1.1 (Brauer Equivalence). For any two A,B ∈ CSA, we say A and B are Brauer
equivalent, when there exists m,n ∈ N⩾0 such that Matm(A) ∼= Matn B as K-algebras. We
denote this relation as A ∼BrK B, when K is clear, we drop the subscript.

Remark 4.1.2. Isomorphic K-algebras are Brauer equivalent.

Lemma 4.1.3. ∼Br is reflexive.

Proof. Indeed, A ∼= Mat1(A) as K-algerbas.

Lemma 4.1.4. ∼Br is symmetric.

Proof. Indeed, just exchange m and n.

Lemma 4.1.5. ∼Br is transitive.

Proof. Let A ∼Br B and B ∼Br C; that is for some m,n, p, q ∈ N⩾0 we have Matn(A) ∼= Matm(B)

and Matp(B) ∼= Matq(C) as K-algebras. Hence, from construction 3.1.3, we have the following:

Matnp(A) ∼= Matp (Matn(A)) ∼= Matp (Matm(B))

∼= Matmp(B) ∼= Matm (Matp(B))
∼= Matm (Matq(C)) ∼= Matmq(C).

In another word, A ∼Br C.

Hence ∼Br is really an equivalence relation, we denote the quotient CSA/∼Br as Br(K).

Lemma 4.1.6. (• ⊗K •) : CSA×CSA→ CSA descends to a function on Br(K).
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Proof. We need to prove that for all A,B,C,D ∈ CSA such that A ∼Br B and C ∼Br D, A ⊗R

C ∼Br B ⊗R D as well. Suppose Matm(A) ∼= Matn(B) as K-algebras and Matp(C) ∼= Matq(D),
by construction 3.1.4, we have

Matmp (A⊗R C) ∼= Matm(A)⊗R Matp(C)
∼= Matn(B)⊗R Matq(D)

∼= Matnq (B⊗R D) .

Construction 4.1.2 (Brauer Group). Br(K) forms a group under [A]∼Br · [B]∼Br = [A⊗KB]∼Br with
neutral element [K]∼Br where A,B ∈ CSA and [A]−1

∼Br
= [Aopp]∼Br . We need to prove the following

properties:

1. associativity: for all A,B,C ∈ CSA, [A]∼Br ·([B]∼Br · [C]∼Br) = ([A]∼Br · [B]∼Br)·[C]∼Br because
A⊗R (B⊗R C) ∼= (A⊗R B)⊗R C as K-algebras.

2. neutral element: for all A ∈ CSA, [K]∼Br · [A]∼Br = [A]∼Br = [A]∼Br · [K]∼Br . Since [K]∼Br ·
[A]∼Br = [K ⊗K A]∼Br , in construction 3.1.4, we see that Matn(A) ∼= A ⊗K Matn(K),
by lemma 4.1.6, A⊗K Matn(K) is Brauer equivalent to A⊗K K since K ∼Br Matn(K).

3. cancellation: for all A ∈ CSA, we need [A]∼Br · [Aopp]∼Br , that is we want A⊗K Aopp ∼Br K.
By construction 3.1.1, we have A⊗K Aopp ∼= EndK A which is isomorphic to MatdimK A(K)

as K-algebras.

Theorem 4.1.7. If K is algebraically closed, Br(K) is trivial; in particular Brn(C) is trivial.

Proof. We need to show that every A ∈ CSA is isomorphic to Matn(K) for some K when K is
algebraically closed. Indeed, by theorem 3.2.6, A ∼= Matn(D) for some division algebra D and
n ∈ N⩾0. Since K is algebraically closed and D is an integral domain and finite dimensional, the
structure morphism ρ : K→ D is a isomorphism; therefore A ∼= Matn(K).

Lemma 4.1.8. Let A,B ∈ CSAK. There exists a division K-algebra D and non-zero m,n ∈ N such
that A ∼= Matm(D) and B ∼= Matn(D) as K-algebras.

Proof. By theorem 3.2.6, we can find division algebras SA, SB and non-zero m,n ∈ N such that
A ∼= Matn (SA) and B ∼= Matm (SB) as K-algebras. Hence B ∼Br A ∼Br Matn (SA) ∼Br SA,
in another word, for some non-zero a, a ′ ∈ N, we have Mata(B) ∼= Mata′ (SA) as K-algebras.
Hence, by theorem 3.2.7, we have that SA ∼= SB as K-algebras and the lemma is proved.

4.2 Base Change
In this section let E/K be a field extension. We have seen in corollary 1.1.11 that if A ∈ CSAK

then E⊗K A ∈ CSAE; therefore we have a set-theoretic function CSAK → CSAE. In this section we
prove that this descends to a group homomorphism Br(K) → Br(E). For brevity, if A ∈ CSAK,
we denote E⊗K A as AE when this causes no confusion.
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Construction 4.2.1. We will construct a series of isomorphisms (either over K or E) to arrive
at the conclusion that A ∼BrK B implies AE ∼BrE BE. Assume m,n ∈ N⩾0 are such that
Matm(A) ∼= Matn(B) are K-algebras. Then we do the following calculation: as E-algebras

Matm (AE) ∼= AE ⊗E Matm(E) see construction 3.1.4
∼= AE ⊗E (E⊗K Matm(K)) see †
∼= E⊗K (A⊗K Matm(K)) see ‡
∼= E⊗K Matm(A) see construction 3.1.4 and ††

Matn (BE) ∼= E⊗K Matn(B) same as the case of A
Matm (AE) ∼= Matn (BE) see ††

.

†: Wee need to check Matm(E) ∼= E⊗KMatm K as E-algebras since construction 3.1.4 only gives a
K-algebra isomorphism. If e ∈ E, then its image in E⊗KMatm(K) is e⊗1 and its image in Matm(E)

is diag(e) which under the K-algebra isomorphism is mapped to
∑

ij diag(e)ij · δij = e⊗ 1.
‡: This is defined by combining two E-algebra homomorphisms

AE → AE ⊗K Matm(K)→ E⊗K (A⊗K Matm(K))

and
E⊗K Matm(K)→ (E⊗K Matm(K))⊗K A→ E⊗K (A⊗K Matm(K)).

Since (E⊗K A) ⊗E (E⊗K Matm(K)) is a simple ring, this morphism is automatically injective.
It is surjective as well: let x ∈ E ⊗K (A⊗K Matm(K)), without loss of generality, assume x =

e⊗ (a⊗ δij) for some e ∈ E, a ∈ A. Then precisely (e⊗ a)⊗ (1⊗ δij) is mapped to x.
††: a K-algebra isomorphism A ∼= B gives an E-algebra isomorphism E⊗K A ∼= E⊗K B.

Thus we have a well defined function Br(K) → Br(E). We now check that this is a group
homomorphism. [K]∼BrK

is mapped to [E⊗KK]∼BrE
but E⊗KK ∼= E as E-algebra. For A,B ∈ CSAK,

we have that [AB]∼BrK
is mapped to (A⊗K B)E

∼= AE ⊗E BE as E-algebras; hence [AB]∼BrK
and

[A]∼BrK
· [B]∼BrK

have the same image under base change.

Denote the base change morphism in construction 4.2.1 as BrEK.

Lemma 4.2.1. BrKK is identity.

Proof. If A ∈ CSA, then A ∼Br K⊗K A.

Lemma 4.2.2. Consider the tower of field extension E/F/K,

BrEK = BrFE ◦BrEK .

Proof. If A ∈ CSAK, then E⊗F (F⊗K A) is isomorphic to E⊗F A as E-algebras.

Corollary 4.2.3. Br forms a functor from category of field to category of abelian groups.

Proof. This is the categorical version of lemma 4.2.1 and lemma 4.2.2.

Definition 4.2.2 (Relative Brauer Group). Let E/K be a field extension, we define the relative
Brauer group Br(E/K) to be the kernel of the base change morphism BrEK.
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Remark 4.2.4. Unpacking the definition of the relative Brauer group, we see that for any A ∈
CSAK, if E⊗K A ∼= Matn(E) as E-algebras, then BrEK ([A]∼Br) = 1.

Definition 4.2.3 (Splitting Field). For any field extension E/K and any K-algebra A, we say E is
a splitting field of A if and only if E ⊗K A ∼= Matn(E) as E-algebras for some non-zero n. We
also say E splits A or A is splited by E

Theorem 4.2.5. Let E/K be a field extension and A ∈ CSAK, E splits A if and only if [A]∼Br ∈
Br(E/K).

Proof. The “only if” part is by definition. For the other direction, we know by definition that
Matn(E⊗KA) ∼= Matm(E) as E-algebras for some non-zero m,n. By theorem 3.2.6, we find some
division algebra D and non-zero natural number p such that E⊗K A ∼= Matp(D) as E-algebras.
Thus Matpm(E) ∼= Matpn (E⊗K A) ∼= Matp2n(D) as E-algebras. By theorem 3.2.7, we conclude
that E ∼= D as E-algebras. Hence E⊗K A ∼= Matp(E), in another word, E splits A.

Remark 4.2.6. In light of lemma 4.2.2, if K is algebraic closed then K splits any K-algebra A.
Indeed, K splits A if and only if [A]∼Br but [A]∼Br is equal to 1.

Remark 4.2.7. If two CSAK are Brauer equivalent, in another word, A ∼BrK B, then E splits A if
and only if E splits B. Indeed, if A and B are equivalent, then [A]∼Br ∈ Br(E/K) if and only if
[B]∼Br ∈ Br(E/K).

4.3 Good Representative Lemma
In this section, let K/F be a finite dimensional field extension.

Lemma 4.3.1. Let A ∈ CSAF splitted by K. There exists a B ∈ CSAF such that

• [A]∼Br [B]∼Br = 1

• there exists F-algebra map K ↪→ B

• (dimF K)
2 = dimF B.

Proof. Since K splits A, we find a non-zero natural number n such that K ⊗F A ∼= Matn K ∼=

EndK (Kn) as K-algebras. We define an F-algebra map ι : A→ EndF (K
n) by

A K⊗F A EndK (Kn) EndF (K
n)

∼= |F ,

where |F is restriction of scalars. Since A is simple, ι is injective, therefore A ∼= ι(A) as F-algebras.
Define B as CEndF(Kn)(ι(A)), the centralizer of the range of ι in EndF (K

n). We construct an
embedding K ↪→ B by r 7→ (r · •)

B is a central F-algebra: if x ∈ Z(B), then x ∈ ι(A) because by theorem 3.4.13, it is sufficient to
prove that x is in CEndF(Kn) (B) which follows from the fact that x ∈ Z(B). In fact, x ∈ Z(ι(A)):
suppose a ∈ A, we need to check x · ι(a) = ι(a) · x, this is the case because B is defined as the
centralizer of ι(A). Since ι(A) ∼= A as F-algebras, ι(A) is F-central, hence x ∈ F.

B is a simple ring: by lemma 3.4.10, it is sufficient to prove that ι(A) is a simple ring which
comes from A ∼= ι(A) as F-algebras.
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By corollary 3.4.12, we have F-algebra isomorphism EndF (K
n) ∼= ι(A)⊗F B ∼= A⊗F B. Since

EndF (K
n) ∼= MatdimF(Kn) (F) as F-algebras, we see that [A]∼Br and [B]∼Br are inverses.

By lemma 3.4.11, dimF B · dimF ι(A) = dimF B · dimF A = dimF EndF (K
n) = (dimF (K

n))2 =

(dimF K · dimK (Kn))2 = n2 · (dimF K)
2. On the other hand, since K ⊗F A ∼= Matn K, we have

dimF K ⊗F A = dimF K · dimF A = dimF Matn K = dimF KdimK Matn K = n2 dimF K. Since
dimF K 6= 0 , we conclude dimF A = n2. Since n 6= 0 and dimF(B) · dimF(A) = n2 dimF(B) =

n2(dimF K)
2, we get the desired result.

Corollary 4.3.2. Let A ∈ CSAF splitted by K. There exists a B ∈ CSAF such that

• [B]∼Br = [A]∼Br

• there exists an F-algebra map K ↪→ B

• (dimF K)
2 = dimF B.

Proof. Let B and ι : K ↪→ B be as in lemma 4.3.1. Consider Bopp and K ↪→ B → Bopp. This
works.

Theorem 4.3.3. Let A ∈ CSAF. K splits A if and only if there exists a B ∈ CSAF such that

• [B]∼Br = [A]∼Br

• there exists an F-algebra map K ↪→ B

• (dimF K)
2 = dimF B.

Proof. The “if” direction is corollary 4.3.2. For the “only if” direction, let B ∈ CSAF and ι : K ↪→ B

be given. We give B a K-module structure by right multiplication, that is for any a ∈ K and
b ∈ B, we define a ·b := b · ι(a). Since B is a finite dimensional F-vector space and K/F is a finite
dimensional field extension, B is a finite dimensional K-vector space as well. Since [B]∼Br = [A]∼Br ,
it is sufficient to show that K splits B. We define an F-bilinear map µ : K → B → EndK B by
(c, a) 7→ (c ·a · •) which induce an F-linear map µ ′ : K⊗FB→ EndK B. Since for any r, c ∈ K and
a ∈ B, we have µ ′ (r · c⊗ a) (a ′) = aa ′ι(rc) = aa ′ι(c)ι(r) = r · µ ′(c ⊗ a), that is µ ′ is K-linear
as well. Note that

µ ′(1) = µ ′(1⊗ 1) = (1 · 1 · •) = 1

and that
µ ′(c⊗ a · c ′ ⊗ a ′)(a ′′) = µ ′(cc ′ ⊗ aa ′)(a ′′)

= cc ′ · aa ′ · a ′′

= aa ′a ′′ι(cc ′)

= a(a ′a ′′ι(c ′))ι(c)

= µ ′(c⊗ a)(a ′a ′′ι(c ′))

= µ ′(c⊗ a) (µ ′(c ′ ⊗ a ′)(a ′′))

= (µ ′(c⊗ a) ◦ µ ′(c ′ ⊗ a ′)) (a ′′)

,

that is, µ ′ is an K-algebra map.
If we can show that µ ′ is a bijection, we will prove the result for K ⊗F B ∼= EndK B ∼=

MatdimK B K as K-algebras. By corollary 1.1.8, it is sufficient to show dimK K⊗FB = dimK EndK B.
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Let n denote dimF K. Since, dimF KdimK K ⊗F B = dimF K ⊗F B = dimF KdimF B. we have
dimK K⊗FB = dimF B = (dimF K)

2. On the other hand, since (dimF K)
2 = dimF B = dimF KdimK B,

we have dimK B = dimF K; thus dimK EndK B = (dimK B)2 = (dimF K)
2 and the result is

proved.

In light of theorem 4.3.3, we isolate the following useful definition:

Definition 4.3.1 (Good Representation). For any X ∈ Br(F), a K-good representation of X is an
A ∈ CSAF and an F-algebra map K ↪→ A such that [A]∼Br = X and dimF A = (dimF K)

2. We often
denote the F-algebra map K ↪→ A as ι or ιA.

When K is clear from context, we will simply say good representation instead of K-good
representation

Corollary 4.3.4. For any X ∈ Br(F), X ∈ Br(K/F) if and only if X admits a good representation.

Proof. Rephrase of theorem 4.3.3 and theorem 4.2.5.

4.3.1 Basic Properties
We observe the following easy result about good representations. Let X ∈ Br(F) and A be a good
representation of X.

Lemma 4.3.5. The range ιA(A) is a simple ring.

Proof. Because K is a simple ring, ιA is injective therefore ιA(A) ∼= K.

Lemma 4.3.6. CA (ιA(A)) = ιA(A).

Proof. In the language of section 1.2, ιA(A) is a subfield of A, hence by lemma 1.2.3, we only
need to show dimF A = (dimF ιA(A))2. But dimF A = (dimF K)

2 and ι(A) ∼= K.

Construction 4.3.2. We give A a K-module structure by left multiplication, that is for any c ∈ K

and a ∈ A, we define c · a to be ιA(c)a. Note that if c ∈ F then ιA(c)a = c · a, in another word,
the K-action and the F-action on A are compatible. Then A is a finite dimensional K-vector
space and dimK A = dimF K: indeed dimF K · dimK A = dimF K · dimF K = dimF A.

Lemma 4.3.7. If A and B are two good representations of X, then A ∼= B as F-algebras.

Proof. By lemma 4.1.8, we find a division F-algebra D and non-zero natural numbers m,n such
that A ∼= Matm(D) and B ∼= Matn(D) as F-algebras. Therefore

(dimF K)
2 = dimF A = m2 dimF D

= dimF B = n2 dimF D.

Therefore m = n and A ∼= Matm D = Matn D ∼= B.
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4.3.2 Conjugation Factors and Conjugation Sequences
In this section, let K/F be a field extension, X ∈ Br(F) and A be a K-good representation of X.

Remark 4.3.8. Since Gal(K/F) acts on K⋆, for x ∈ K⋆,we feel free to write σ ·x when it feels more
readable than σ(x), for example when there are nested brackets.

Definition 4.3.3 (Conjugation Factor). With respect to A, a conjugation factor of σ is a unit
xσ ∈ A⋆ such that for all c ∈ K,

xσιA(c)x
−1
σ = ιA(σ · c).

A conjugation sequence is a sequence x : Gal(K/F) → A⋆ such that for all σ ∈ Gal(K/F),
xσ is a conjugation factor of σ. When we want to stress A, we say A-conjugation factor and
A-conjugation sequence.

Remark 4.3.9. When xσ is a conjugation factor of σ, the equalities xσιA(c) = xσιA(σ(c)) and
ιA(c)x

−1
σ = x−1

σ ιA(σ(c)) are also useful.

Construction 4.3.4. A has a conjugation sequence: let σ ∈ Gal(K/F), we have two F-algebra
homomorphisms K→ A given by ιA and ιA ◦ σ. Applying theorem 3.3.4 to ιA and ιA ◦ σ gives
us the desired conjugation factor.

Construction 4.3.5. If x is a conjugation factor of σ and y of τ, then xy is a conjugation factor
of στ. For any c ∈ K

ιA(σ · τ(c)) = xιA(τ · c)x−1 = xyιA(c)y
−1x−1 = (xy) ιA(xy)

−1
.

Theorem 4.3.10. If x is an A-conjugation sequence, then {xσ|σ ∈ Gal(K/F)} is an K-linearly
independent set. When K/F is finite dimensional and Galois, {xσ|σ ∈ Gal(K/F)} is a K-basis for
A.

Proof. Suppose {xσ} is linearly dependent. Let J ⊆ Gal(K/F) be such that {xσ|σ ∈ J} is a
maximally linearly independent subset. Then J 6= Gal(K/F), let σ ∈ Gal(K/F) be an arbitrary
automorphism that is not in J. Since {xτ|τ ∈ J} is maximally linearly independent, xσ ∈ 〈xτ|τ ∈ J〉.
Hence, by construction 4.3.2 we have

xσ =
∑
τ∈J′

λτ · xτ =
∑
τ∈J′

ιA (λτ) xτ,

for some non-zero λτ ∈ K and J ′ ⊆ J. For each c ∈ K, we have the following equality

ιA (σ · c) xσ = xσιA(c) by definition 4.3.3

=
∑
τ∈J′

λτ · xτιA(c)

=
∑
τ∈J′

λτ · ιA (τ · c) xτ by definition 4.3.3 again

=
∑
τ∈J′

ιA (λττ(c)) xτ;

ιA (σ · c) xσ =
∑
τ∈J′

ιA (λτ) xτιA(c)

=
∑
τ∈J′

ιA (σ(c)λτ) xτ.
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Since {xτ|τ ∈ J ′} is linearly independent, we have that for each τ ∈ J ′, λττ(c) = σ(c)λτ = λτσ(c).
Note that J ′ is not empty, for otherwise xσ =

∑
τ∈∅ λτ ·xτ = 0 but xσ is invertible. Since for any

τ ∈ J ′, λτ is not zero, we have that for all c ∈ K, σ(c) = τ(c), i.e. σ = τ. Hence σ is in J ′ ⊆ J

after all; contradiction.
If K/F is finite dimensional and Galois, then dimF K is equal to the cardinality of Gal(K/F),

then by the linear independence of {xσ|σ ∈ Gal(K/F)}, we conclude that it is indeed a K-basis for
A.

4.4 The Second Galois Cohomology
In this section, we construct a group isomorphism between Br(K/F) ∼= H2 (Gal(K/F), K⋆) where
K/F is a finite dimensional Galois extension. To keep alignment of the Brauer group, let us use
the multiplicative notation for group cohomology. Recall:

Definition 4.4.1 (the Second Group Cohomology). Let G be a group and M an abelian group
(written multiplicatively) with a G-action.

A function f : G×G→M is a 2-cocycle if for all g, h, j ∈ G,

f(gh, j)f(g, h) = (g · f(h, j)) f(g, hj).

We denote the subgroup of 2-cocycles as Z2(G,M).
A function f : G × G → M is a 2-coboundary if there exists an x : G → M such that for all

g, h ∈ G
g · x(h)
x(gh)

x(g) = f(g, h).

We denote the subgroup of 2-coboundaries as B2(G,M).
The second group cohomology H2 (G,M) is defined to be the quotient group of 2-cocycles

modulo 2-coboundaries Z2(G,M)/B2(G,M). If s, t ∈ Z2(G,M), we say s and t are cohomologous
if their equivalence class [s], [t] ∈ H2(G,M) are the same; in another word st−1 ∈ B2(G,M).

Lemma 4.4.1. If f ∈ B2(G,M) is a 2-cocycle and x ∈ G, we have

f(1, x) = f(1, 1)

f(x, 1) = x · f(1, 1).

Proof. Indeed:
f(1 · 1, x)f(1, 1) = (1 · f(1, x))f(1, 1 · x)

f(1, x)f(1, 1) = f(1, x)f(1, x)

f(1, x) = f(1, 1)

and
f(x · 1, 1)f(x, 1) = (x · f(1, 1))f(x, 1 · 1)

f(x, 1)f(x, 1) = (x · f(1, 1))f(x, 1)
f(x, 1) = x · f(1, 1).

In the following sections of this chapter, we assume that X ∈ Br(F) and A is a good represen-
tation of X. We use ρ, σ, τ to denote elements of Gal(K/F). To improve typographic aesthetics
of our proofs, we sometimes use subscript to mean function application.
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4.4.1 From Br(K/F) to H2 (Gal(K/F), K⋆)

Lemma 4.4.2 (Twisting Conjugation Factors). If x and y are two conjugation factors of σ, then
there exists a unique c ∈ K such that x = yιA(c).

Proof. The uniqueness is clear: suppose x = yιA(c) = yιA(c
′), then c = c ′ because x, y are

units and ιA is injective. We first observe that y−1x ∈ CA(ι(A)): for any z ∈ K, y−1xιA(z) =

y−1ιA(σ(z))x = ιA(z)y
−1x (by remark 4.3.9). By lemma 4.3.6, y−1x ∈ ι(A), that is for some

z ∈ K, we have that y−1x = ιA(z) and the claim is proved.

We denote such c by twistσ(x, y) or twistσx,y, when σ is clear from context, we often omit the
superscript. With this notation, x = yιA(twistx,y).

Remark 4.4.3. twist(x, x) is equal to 1 by uniqueness.

Remark 4.4.4. In fact, twist(x, y) is in K⋆ and twist(x, y)−1 = twist(y, x).

Lemma 4.4.5. If x and y are conjugation factors for σ, x = ιA(σ(twistx,y))y.

Proof.
x = xιA (twistx,y) x−1xιA(twisty,x)
= ιA (σ · twistx,y) xιA (twisty,x)
= ιA (σ · twistx,y)y

.

Construction 4.4.2 (Comparing Conjugation Factors). Let x be a conjugation factor for σ, y for
τ and z for στ. Since xy is a also a conjugation factor, we define the comparison coefficient to be
compσ,τ

x,y,z := σ (τ (twistxy,z)). We often omit superscript when the context is clear. Note that
compx,y,z is a unit in K with inverse σ (τ (twistz,xy)). By lemma 4.4.2 and lemma 4.4.5, we have
the following useful equalities

xy = ιA
(
compx,y,z

)
z

ιA
(
comp−1

x,y,z

)
xy = z

ιA
(
compx,y,z

)
= xyz−1

ιA
(
comp−1

x,y,z

)
= zy−1x−1

. . . = . . .

.

Lemma 4.4.6. Let x : Gal(K/F)→ A⋆ be a conjugation sequence. We have

compxρ,xσ,xρσ
compxρσ,xτ,xρστ

= ρ
(
compxσ,xτ,xστ

)
compxρ,xστ,xρστ

.

Proof. It is sufficient to make the following calculations:

xρ xσxτ = ιA

(
compxρ,xσ,xρσ

)
ιA

(
compxρσ,xτ,xρστ

)
xρστ (4.1)

xρ (xσxτ) = ιA
(
ρ · compxσ,xτ,xστ

)
ιA

(
compxρ,xστ,xρστ

)
xρστ (4.2)

Then since xρστ is invertible and ιA is injective, we proved the desired result.
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Equation (4.1) is because: by the first equality in construction 4.4.2 (twice)

xρxσxτ = ιA

(
compxρ,xσ,xρσ

)
xρσxτ = ιA

(
compxρ,xσ,xρσ

)
ιA

(
compxρσ,xτ,xρστ

)
xρστ.

Equation (4.2) is because: by definition 4.3.3, we have

ιA
(
ρ · compxσ,xτ,xστ

)
xρ = xριA

(
compxσ,xτ,xστ

)
,

therefore by construction 4.2.1

xρ (xσxτ) = xριA
(
compxσ,xτ,xστ

)
xστ

= ιA
(
ρ · compxσ,xτ,xστ

)
xρxστ

= ιA
(
ρ · compxσ,xτ,xστ

)
ιA

(
compxρ,xστ,xρστ

)
xρστ

.

Construction 4.4.3 (from good representation to 2-cocycle). Let x be an A-conjugation sequence.
We associate with x a function B2(x) : Gal(K/F)×Gal(K/F)→ K⋆ defined by

(σ, τ) 7→ compxσ,xτ,xστ
.

We will write B2(x) as B2
A,x, B2

A(x) or B2
x as well.

Lemma 4.4.7. For any A-conjugation sequence x, B2
x ∈ B2 (Gal(K/F), K⋆), that is Bx is indeed

a 2-cocycle.

Proof. We need to prove

Bx(ρσ, τ)Bx(ρ, σ) = ρ (Bx(σ, τ)) Bx(ρ, στ).

But this is exactly lemma 4.4.6.

For any good representation A of X ∈ Br(K/F) and any A-conjugation sequence x, we
have constructed a 2-cocycle B2

A(x). But to obtain a well-defined function from Br(K/F) to
H2 (Gal(K/F), K⋆), we need to verify that for any other good representation B of X and B-
conjugation sequence y, B2

A(x) and B2
B(y) are cohomologous. Let us fix another good represen-

tation B of X ∈ Br(K/F) and a B-conjugation sequence y.

Construction 4.4.4. By lemma 4.3.7, A and B are isomorphic as F-algebras, we use eA,B to denote
an arbitrary F-algebra isomorphism between A and B. When there is no confusion, we write e

instead of eA,B Since e◦ιA and ιB are two F-algebra homomorphism from K to B, by theorem 3.3.4,
there exists some u ∈ B⋆ such that for all r ∈ K, we have ιB(r) = ue (ιA(r))u

−1 (or equivalently,
u−1ιB(r)u = e (ιA(r))). When there is confusion, we write uA,B instead of u.

Lemma 4.4.8. For any c ∈ K, σ ∈ Gal(K/F) and A-conjugation factor x of σ, we have

ιB (σ · c) = ue(x)u−1 ιB(c)ue
(
x−1

)
u−1.
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Proof. From definition 4.3.3, we have e (ιA(σ · c)) = e
(
xιA(c)x

−1
)
. Substituting it in construc-

tion 4.4.4, we get
ιB(σ · c) = ue

(
xιA(c)x

−1
)
u−1

= ue(x)e (ιA(c)) e
(
x−1

)
u−1

= ue(x)u−1ιB(c)ue
(
x−1

)
u−1.

Construction 4.4.5. If x is an A-conjugation factor for σ, we can obtain a B-conjugation factor
for σ by defining B⋆x := ue(x)u−1 with inverse ue

(
x−1

)
u−1. We use lemma 4.4.8 to check that

B⋆x is indeed a conjugation factor for σ. If y is a B-conjugation factor for σ, another useful
constant is v := σ (twisty,B⋆x). We have

y = ιB (v) B⋆x

ιB (v) = ue (ιA (v))u−1

v−1 = σ (twistB⋆x,y)

.

We also write vx,y or even vA,B
x,y when we stress the importance of good representation A and B

and their conjugation factor x and y.

Lemma 4.4.9. Let x be an A-conjugation sequence and y a B-conjugation sequence. We have

compyσ,yτ,yστ
vxστ,yστ

= vxσ,yσ
σ (vxτ,yτ

) compxσ,xτ,xστ
.

Proof. By construction 4.4.2, we have yσyτ = ιB
(
compyσ,yτ,yστ

)
yστ. By repeated application

of construction 4.4.5 and construction 4.4.4, we have

yστ = ue (ιA (vxστ,yστ
) xστ) u

−1

yσyτ = ue (ιA (vxσ,yσ
) xσιA (vxτ,yτ

) xτ) u
−1

= ιB
(
compyσ,yτ,yστ

)
yστ

= ιB
(
compyσ,yτ,yστ

)
ue (ιA (vxστ,yστ

) xστ) u
−1

= ue
(
ιA
(
compyσ,yτ,yστ

))
u−1 ue (ιA (vxστ,yστ

) xστ) u
−1

= ue
(
ιA
(
compyσ,yτ,yστ

vxστ,yστ

)
xστ
)
u−1.

Hence
ιA (vxσ,yσ

) xσιA (vxτ,yτ
) xτ = ιA

(
compyσ,yτ,yστ

vxστ,yστ

)
xστ.

We also have by definition 4.3.3

xσιA (vxτ,yτ
) xτ = ιA (σ · vxτyτ

) xσxτ.

Hence
ιA (vxσ,yσ

) xσιA (vxτ,yτ
) xτ = ιA (vxσ,yσ

σ (vxτ,yτ
)) xσxτ

= ιA
(
vxσ,yσ

σ (vxτ,yτ
) compxσ,xτ,xστ

)
xστ

= ιA
(
compyσ,yτ,yστ

vxστ,yστ

)
xστ.

Cancelling xστ and by injectivity of ιA, the result is proved.
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Lemma 4.4.10. Let x be an A-conjugation sequence and y a B-conjugation sequence. We have

B2
B,y(σ, τ)vxστ,yστ

= vxσ,yσ
σ (vxτ,yτ

)B2
A,y(σ, τ).

Proof. If we unfold construction 4.4.3, we discover the lemma is saying exactly lemma 4.4.9.

We finally arrive at our main conclusion for this section.

Corollary 4.4.11. Let x be an A-conjugation sequence and y a B-conjugation sequence. B2
A,x

and B2
B,y are 2-cohomologous.

Proof. By definition 4.4.1, we need to find a function f : Gal(K/F) → K⋆ such that for all
σ, τ ∈ Gal(K/F),

σ (f(τ))

f (στ)
f(σ) =

B2
B,y

B2
A,x

.

Let f(ρ) := vxρ,yρ
, by lemma 4.4.10 we see the equality holds.

Construction 4.4.6 (from Br(K/F) to H2 (Gal(K/F), K⋆)). Let X ∈ Br(K/F), by corollary 4.3.4, X
admits a good representation A; by construction 4.3.4, A admits a conjugation sequence x. We
associate with X an element H2(X) :=

[
B2

A,x

]
in H2 (Gal(K/F), K⋆). By corollary 4.4.11, for any

other good representation B and B-conjugation sequence y, we have
[
B2

A,x

]
=
[
B2

B,y

]
, hence we

have a well-defined function H2 : Br(K/F)→ H2 (Gal(K/F), K⋆).

4.4.2 Cross Product as a Central Simple Algebra
Let a ∈ B2 (Gal(K/F), K⋆) be any 2-cocycle. In this section, we construct the cross product
associated with a which we prove to be F-central simple. Finally, we show that if a, b ∈
B2 (Gal(K/F), K⋆) are cohomologous, the cross products associated with a and b are Brauer
equivalent.

Construction 4.4.7 (Cross product). Denote Ca to be Gal(K/F)→ K, i.e. functions from Gal(K/F)
to K. Notationally, elements of Ca are sequences in K indexed by Gal(K/F); we denote ∆a

σ,c to
be the sequence with value c at σ-th index and zero elsewhere. When a is clear from context,
we will omit the superscript. We give Ca the usual zero, addition, negation, that is, we give Ca

the normal additive abelian group structure. Since for each c ∈ Ca,

c =
∑

σ∈Gal(K/F)

∆σ,c(σ),

it is often, if not always, sufficient to consider the special cases of ∆σ,c and extend the result lin-
early. For multiplications, we define the result of multiplying ∆σ,c, ∆τ,d Ca to be ∆στ,cσ(d) a(σ,τ).
Immediately, if either c or d is 0, the result of multiplication is also zero. That is, for all c ∈ Ca,
we have c · 0 = 0 · c = 0. For any r ∈ F and ∆σ,c ∈ Ca, we define r · ∆σ,c to be ∆σ,r·c.

Remark 4.4.12. When K/F is infinite dimensional, the correct definition of Ca is perhaps
⊕

σ∈Gal(K/F) K.
But in Lean4, function type is easier to manipulate than direct sums. Since our scope is finite
dimensional Galois extension, our definition is still accurate.

Lemma 4.4.13. The cross product Ca is a ring with the multiplicative unit ∆id,a(id,id)−1 . The
F-action on Ca defined by r · ∆σ,c := ∆σ,r·c makes it an F-algebra.
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Proof. We verify the axioms of rings on elements of the form ∆σ,c. Let σ, τ, ρ ∈ Gal(K/F) and
a, b, c ∈ K.

• associativity of multiplication. We need to check that ∆σ,a (∆τ,b∆ρ,c) = (∆σ,a∆τ,b)∆ρ,c:

∆σ,a (∆τ,b∆ρ,c) = ∆σ,a∆τρ,bτ(c)a(σ,τ)

= ∆στρ,aσ(b)σ(τ(c))σ(a(σ,τ));
(∆σ,a∆τ,b)∆ρ,c = ∆στ,aσ(b)a(σ,τ)∆ρ,c

= ∆στρ,aσ(b)a(σ,τ)σ(τ(c))a(στ,ρ).

Hence it is sufficient to check

σ(τ(c))σ(a(σ, τ)) = a(σ, τ)σ(τ(c))a(στ, ρ).

This is the 2-cocycle condition in definition 4.4.1 (modulo commutativity of K).

• multiplicative unit: we need to check ∆σ,a∆id,a(id,id) = ∆id,a(id,id)∆σ,a = ∆σ,a. By multiple
applications of lemma 4.4.1

∆id,a(id,id)−1∆σ,a = ∆σ,a(id,id)−1aa(id,σ)

= ∆σ,a(id,id)aa(id,id)

= ∆σ,a

∆σ,a∆id,a(id,id)−1 = ∆σ,aσ(a(id,id))−1a(σ,id)

= ∆σ,aσ(a(id,id))−1σ(a(id,id))

= ∆σ,a

• distributivity: We need to check left-distributivity ∆σ,a (∆τ,b + ∆ρ,c) = ∆σ,a∆τ,b+∆σ,a∆ρ,c

and right distributivity (∆τ,b + ∆ρ,c)∆σ,a = ∆τ,b∆σ,a +∆ρ,c∆σ,a. This is precisely what
“extend linearly” means.

• F-algebra: We need to check for all r ∈ F,
(
r · ∆id,a(id,id)−1

)
∆σ,c = ∆σ,c

(
r · ∆id,a(id,id)−1

)
.

By lemma 4.4.1 (
r · ∆id,a(id,id)−1

)
∆σ,c = ∆id,r·a(id,id)−1∆σ,c

= ∆σ,(r·a(id,id)−1)ca(id,σ)

= ∆σ,(r·a(id,id)−1)ca(id,id)

= ∆σ,r·c

∆σ,c

(
r · ∆id,a(id,id)−1

)
= ∆σ,c∆id,r·a(id,id)−1

= ∆σ,cσ(r·a(id,id)−1)a(σ,id)

= ∆σ,c(r·σ(a(id,id)−1))a(id,id)−1

= ∆σ,c(r·1)

= ∆σ,r·c.
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From now on, we feel free to write 1 ∈ Ca instead of ∆id,a(id,id)−1 . Then the algebra map
F ↪→ Ca is the map r 7→ r · 1.

Construction 4.4.8 (K-embedding). The map ιCa
: K→ Ca defined by

b 7→ ∆id,ba(id,id)−1

is an F-algebra map. Checking that ιCa
preserves 1, multiplication and addition uses nothing

but axioms of ring. For any r ∈ F, we need to check ιCa
(r) = r · 1. Indeed ιCa

(r) = ∆id,r·a(id,id)−1

and r · 1 = r ·∆id,a(id,id)−1 = ∆id,r·a(id,id)−1 . When the context is clear, we also write ιa instead of
ιCa

. We give Ca a K-module structure by left-multiplication, that is for any b ∈ K and c ∈ Ca,
we define b · c := ιa(b)c.

We note the following useful equality: for any b ∈ K

b · ∆σ,c = ιa(b)∆σ,c = ∆σ,bc,

indeed: ιa(b)∆σ,c = ∆id,ba(id,id)−1∆σ,c = ∆σ,ba(id,id)−1ca(id,σ) = ∆σ,ba(id,id)−1ca(id,id) = ∆σ,bc

by lemma 4.4.1. In another word, for any b ∈ F and c ∈ Ca, the K-action of b on c and the
F-action of b on c agree.

Lemma 4.4.14. For every σ ∈ Gal(K/F), ∆σ,1 is invertible.

Proof. It is sufficient to prove that ∆σ,1 has a left inverse and right inverse. The left inverse of
∆σ,1 is

∆
σ−1,a(σ−1,σ)

−1
a(id,id)−1 .

Indeed, for any a ∈ K, we have

∆σ−1,a ∆σ,1 = ∆id,aa(σ−1,σ),

hence substitute a = a
(
σ−1, σ

)−1
a(id, id)−1, we see the right hand side is ∆id,a(id,id)−1 which is

precisely 1 ∈ Ca. The right inverse is

∆
σ−1,σ−1(a(σ,σ−1)

−1
a(id,id)−1).

Indeed, for any a ∈ K, we have

∆σ,1 ∆σ−1,a = ∆id,σ(a)a(σ,σ−1),

hence substitude a = σ−1
(
a
(
σ, σ−1

)−1
a(id, id)−1

)
, the right hand side is again ∆id,a(id,id)−1

which is precisely 1 ∈ Ca.

Lemma 4.4.15. For any c ∈ K, we have

∆σ,1 ιa(c) = ιa(σ · c)∆σ,1 = ∆σ,σ·c

and consequently,
∆σ,1 ιa(c)∆

−1
σ,1 = ιa(σ · c).
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Proof. We calculate
∆σ,1ιa(c) = ∆σ,1 ∆id,ca(id,id)−1

= ∆σ,σ(ca(id,id)−1)a(σ,1)

= ∆σ,σ(c)σ(a(id,id))−1σ(a(id,id))

= ∆σ,σ(c).

Lemma 4.4.16. We have ∆σ,1 ∆τ,1 = ιa(a(σ, τ))∆στ,1 = a(σ, τ) ·∆στ,1 Consequently we have for
any c, d ∈ K,

∆σ,c∆τ,d = (cσ(d)a(σ, τ)) · ∆στ,1.

Proof. The first equality is in construction 4.4.8. For the second equality, by lemma 4.4.15, we
have

∆σ,c∆σ,d = (c · ∆σ,1) (d · ∆τ,1)

= ιa(c) (∆σ,1ιa(d))∆τ,1

= ιa∆σ,σ·d∆τ,1

= c · σ(d) · ∆σ,1∆τ,1

= c · σ(d) · a(σ, τ) · ∆στ,1.

Lemma 4.4.17. The set {∆σ,1|σ ∈ Gal(K/F)} forms a K-basis for Ca.

Proof. Suppose some linear combination
∑

σ λσ · ∆σ,1 is 0 for some λσ’s in K. We have, by the
equality in construction 4.4.8∑

σ∈Gal(K/F)

λσ · ∆σ,1 =
∑

σ∈Gal(K/F)

∆σ,λσ
= 0.

Thus, for any τ ∈ Gal(K/F), we have ∑
σ∈Gal(K/F)

λσ · ∆σ,1

 (τ) = 0 = λτ,

which proves linear independence. The fact that {∆σ,1|σ ∈ Gal(K/F)} spans Ca is easy to see
because every ∆τ,a = a · ∆τ,1 is certainly in the span.

Corollary 4.4.18. When K/F is a finite dimensional Galois extension, the K-dimension of Ca is
dimF K and the F-dimension of Ca is (dimF K)

2.

Now we see that cross product, like a good representation, is a K-module and F-algebra with a
K-embedding and correct F-dimension. In the next sections, we prove that Ca is in fact a central
simple F-algebra.
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Central Algebra

We will assume K/F is a finite dimensional Galois extension.

Theorem 4.4.19 (Centrality). Ca is a central F-algebra.

Proof. Let z ∈ Ca that is in the centre. We want to prove that z is in F. We write z as∑
σ λσ · ∆σ,1. We see that, for any τ ∈ Gal(K/F), we have

z =
∑

σ∈Gal(K/F)

λτ−1στ · ∆τ−1στ,1.

Therefore for any d ∈ K and τ ∈ Gal(K/F), by lemma 4.4.16 and lemma 4.4.15, we have

z∆τ,d =
∑

σ∈Gal(K/F)

λσ · ∆σ,1∆τ,d

=
∑

σ∈Gal(K/F)

λσ · σ(d) · a(σ, τ) · ∆στ,1

=
∑

σ∈Gal(K/F)

(λσσ(d)a(σ, τ)) · ∆στ,1

∆τ,d z =
∑

σ∈Gal(K/F)

∆τ,d (λτ−1στ · ∆τ−1στ,1)

=
∑

σ∈Gal(K/F)

∆τ,dιa (λτ−1στ)∆τ−1στ,1

=
∑

σ∈Gal(K/F)

d · ∆τ,1ιa (λτ−1σ,τ)∆τ−1στ,1

=
∑

σ∈Gal(K/F)

d · ∆τ,τ·λ
τ−1στ

∆τ−1στ,1

=
∑

σ∈Gal(K/F)

d · τ (λτ−1στ) · ∆τ,1∆τ−1στ,1

=
∑

σ∈Gal(K/F)

d · τ (λτ−1στ) · a
(
τ, τ−1στ

)
· ∆στ,1

=
∑

σ∈Gal(K/F)

(
dτ (λτ−1στ) a

(
τ, τ−1στ

))
· ∆στ,1.

By lemma 4.4.17, for any σ, τ ∈ Gal(K/F) and d ∈ K, we have that

λσσ(d)a(σ, τ) = dτ (λτ−1στ) a
(
τ, τ−1στ

)
. (4.3)

In particular, with d = 1, we have

λσa(σ, τ) = τ (λτ−1στ) a
(
τ, τ−1στ

)
,

we substitute back into eq. (4.3) and get

λσσ(d)a(σ, τ) = dλσa(σ, τ).
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With τ = id, we have
λσσ(d)a(σ, id) = dλσa(σ, id),

Hence for all d ∈ K with λσ 6= 0, we have σ(d) = d. We immediately deduce that for all
σ 6= id, λσ = 0 by contraposition. Thus z = λid∆id,1 = ∆id,λid = ιa (λida(id, id)) = (λida(id, id)) · 1.
Consequently, to prove z is in F, it is sufficient to prove that λida(id, id) is in F. Since K/F

is finite dimensional and Galois, we only need to prove that λida(id, id) is fixed by every τ ∈
Gal(K/F).Indeed, with d = 1 and σ = id in eq. (4.3), we have

λida(id, τ) = τ (λid) a(τ, id)
= λida(id, id)
= τ (λid) τ (a(id, id))
= τ (λida(id, id)) .

Simple Ring

In this section we assume K/F is a finite dimensional field extension. Let I ⊆ Ca be a two sided
ideal, we aim to show that either I = {0} or I = Ca. In this section, we use π to denote the
canonical ring homomorphism Ca → Ca/I. We restrict π to π|im(ιa) : im (ιa)→ Ca/I and denote
the range of π|im(ιa) to be Π.

Construction 4.4.9. The quotient ring Ca/I is a Π-module defined by π (ιa(a)) · π(y) := π(a · y).
We first check that the Π-action is well-defined:

• Independence of a: Let a, b ∈ K be such that π (ιa(a)) = π (ιa(b)), that is, ιa(a − b) ∈ I.
Since I is a two sided ideal, a · y− b · y = (a− b) · y = ιa(a− b)y is also in I. This proves
π(a · y) = π(b · y).

• Independence of y: Let y1, y2 ∈ Ca be such that y1 − y2 ∈ I, then for any a ∈ K,
a ·y1−a ·y2 = ιa(a) (y1 − y2) is in I because I is a two sided ideal. This proves π (ιa(a)) ·
π(y1) = π (ιa(a)) · π(y2).

Then we check the axioms of module:

• Let y ∈ Ca, we check that 1 ·π(y) = π(y) and 0 ·π(y) = 0. This is because Π 3 1 = π (ιa(1))

and Π 3 0 = π (ιa(0)). Let a ∈ K, π (ιa(a)) · 0 = 0 because 0 ∈ Ca/I is equal to π(0).

• Let a, b ∈ K and x, y ∈ Ca, we check (π (ιa(a)) + π (ιa(b))) · π(x) = π (ιa(a)) · π(x) +
π (ιa(b)) · π(x) and π (ιa(a)) · (π(x) + π(y)) = π (ιa(a)) · π(x) + π (ιa(a)) · π(y). These are
true because π preserves addition. Similarly π (ιa(a)) · π (ιa(b)) · π(x) = π (ιa(ab)) · π(x)
because π preserves multiplication as well.

Hence Ca/I is also a K-module by pulling back the Π-module structure along K→ Π given by
a 7→ π (ιa(a)). Note that π is a K-linear map between Ca and Ca/I by this construction.

Lemma 4.4.20. If I 6= Ca, the set {π (∆σ,1) |σ ∈ Gal(K/F)} forms a K-basis for Ca/I.
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Proof. It is easy to see that the set spans Ca/I because {∆σ,1|σ ∈ Gal(K/F)} spans Ca (lemma 4.4.17).
For linear-independence, the idea is the same as in the proof of theorem 4.3.10. We repeat the
argument here.

Suppose that {π (∆sigma,1) |σ ∈ Gal(K/F)} is linearly dependent. Let J ⊆ Gal(K/F) be such
that {π (∆σ,1) |σ ∈ J} is the maximally linearly independent set. Let σ be an arbitrary auto-
morphism that is not in J. Therefore, we have π (∆σ,1) ∈ 〈π (∆τ,1) |τ ∈ J〉. Hence we have,
by construction 4.4.9 and construction 4.4.8

π (∆σ,1) =
∑
τ∈J′

λτ · π (∆τ,1) =
∑
τ∈J′

π (ιa (λτ))π (∆τ,1) =
∑
τ∈J′

π (ιa (λτ)∆τ,1) =
∑
τ∈J′

π (λτ · ∆τ,1) .

for some non-zero λτ ∈ K and some J ′ ⊆ J. Hence, for any c ∈ K, we have

π (ιa (σ · c))π (∆σ,1) = π (∆σ,1)π (ιa(c)) by lemma 4.4.15

=
∑
τ∈J

π (ιa (λτ))π (∆τ,1)π (ιa(c))

=
∑
τ∈J

π (ιa (λτ)∆τ,1ιac)

=
∑
τ∈J

π (ιa (λτ) ιa(τ · c)∆τ,1) by lemma 4.4.15 again

=
∑
τ∈J

π (ιa (λττ(c)))π (∆τ,1)

=
∑
τ∈J

(λττ(c)) · π (∆τ,1)

π (ιa (σ · c))π (∆σ,1) =
∑
τ∈J

π (ιa(σ · c))π (ιa (λτ))π (∆τ,1)

=
∑
τ∈J

π (ιa (σ(c)λτ))π (∆τ,1)

=
∑
τ∈J

(σ(c)λτ) · π (∆τ,1) .

Since, {π (∆τ,1) |τ ∈ J} is linearly independent, for all c ∈ K and τ ∈ J, we have that λττ(c) =

σ(c)λτ. Note that J ′ 6= ∅, otherwise, π (∆σ,1) = 0 implying that ∆σ,1 ∈ I which by lemma 4.4.14
is invertible but I does not equal to Ca. Hence for each τ ∈ J ′, we have that for all c ∈ K, since
λτ is not zero, σ(c) = τ(c), i.e. σ = τ. Therefore, σ is in J ′ ⊆ J after all.

Corollary 4.4.21. If I 6= Ca, the quotient ring Ca/I is isomorphic to Ca as K-modules. In particular
π is a K-linear isomorphism between Ca and the quotient ring Ca/I.

Proof. Indeed, by lemma 4.4.17, {∆σ,1|σ ∈ Gal(K/F)} is a K-basis for Ca; and by lemma 4.4.20,
{π (∆σ,1) |σ ∈ Gal(K/F)} is a K-basis for Ca/I. The two sets obviously biject. Hence we can define
a K-linear isomorphism by ∆σ,1 7→ π (∆σ,1). This isomorphism is equal to π everywhere.

Corollary 4.4.22 (Simple Ring). Ca is a simple ring.

Proof. For any two-sided-ideal I that is not equal to Ca, by corollary 4.4.21, π : crossa → Ca/I
is a K-linear isomorphism, therefore I is equal to 0.
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Theorem 4.4.23. Let K/F be a finite dimensional and Galois field extension and a be a 2-cocycle
in B2 (Gal(K/F), K⋆), Ca is a finite dimensional central simple F-algebra.

Proof. Theorem 4.4.19, lemma 4.4.17 and corollary 4.4.22.

4.4.3 From H2 (Gal(K/F), K⋆) to Br(K/F)
For every 2-cocycle a, we have defined the cross product Ca and proved that it is indeed a
finite dimensional central simple F-algebra in theorem 4.4.23; that is we have a function from
B2 (Gal(K/F), K⋆) to CSAF. If we want a function from H2 (Gal(K/F), K⋆) to Br(K/F), we need
to show that if a and b are cohomologous, Ca and Cb are Brauer equivalent. We state it as a
theorem:

Theorem 4.4.24. If K/F is a finite dimensional and Galois field extension, the function C :

H2 (Gal(K/F), K⋆)→ Br(K/F) defined by

a 7→ [Ca]∼Br

is well-defined.

Proof. Let a and b be two cohomologous 2-cocycles. By definition 4.4.1, for some c : Gal(K/F)→
K⋆, for all σ, τ ∈ Gal(K/F), we have

σ(c(τ))

c(στ)
c(σ) =

a(σ, τ)

b(σ, τ)
. (4.4)

Let us denote A to be the K-basis {∆a
σ,1|σ ∈ Gal(K/F)} for Ca and B to be the K-basis {c(σ) ·

∆b
σ,1|σ ∈ Gal(K/F)} for Cb. We immediately have a K-linear isomorphism ϕ : Ca

∼= Cb by mapping
A to B. Since the K-action on Ca and Cb agrees with the F-action on them (construction 4.4.8), ϕ
is also an F-linear isomorphism. We check that ϕ(1) = 1 and ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ Ca:

1. preservation of one: with σ = τ = id in eq. (4.4), we have c(id) = a(id, id)b(id, id)−1, thus

ϕ(1) = ϕ
(
∆a

id,a(id,id)−1

)
= ϕ

(
a(id, id)−1 · ∆a

id,1
)

= a(id, id)−1 · c(id) · ∆b
id,1

= a(id, id)−1 · c(id) · b(id, id) · b(id, id)−1 · ∆b
id,1

=
(
a(id, id)−1c(id)b(id, id)

)
·
(
b(id, id)−1 · ∆id,1

)
=
(
a(id, id)−1a(id, id)

)
· ∆id,b(id,id)−1

= ∆id,b(id,id)−1 .

2. preservation of multiplication: let σ, τ ∈ Gal(K/F) and a, b ∈ K, we need to prove that
ϕ (∆a

σ,a∆
a
τ,b) = ϕ (∆a

σ,a)ϕ
(
∆b

τ,b

)
. From eq. (4.4), we see that

σ(c(τ))c(σ)b(σ, τ) = c(στ)a(σ, τ).
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Hence, by lemma 4.4.16 and lemma 4.4.15, we have

ϕ (∆a
σ,a∆

a
τ,b) = ϕ

(
∆a

στ,aσ(b)a(σ,τ)

)
= ϕ (aσ(b)a(σ, τ) · ∆a

στ,1)

= aσ(b)a(σ, τ) · ϕ (∆a
στ,1)

= aσ(b)a(σ, τ)c(στ) · ∆b
στ,1.

= aσ(b)σ(c(τ))c(σ)b(σ, τ) · ∆b
στ,1

= c(σ)σ(c(τ)) · ∆b
στ,aσ(b)b(στ)

= c(σ)σ(c(τ)) · ∆b
σ,a∆

b
τ,b

ϕ (∆a
σ,a)ϕ (∆a

τ,b) = ϕ (a · ∆a
σ,1)ϕ (b · ∆a

τ,1)

= (a · ϕ (∆a
σ,1)) (b · ϕ (∆a

τ,1))

=
(
ac(σ) · ∆b

σ,1

) (
bc(τ) · ∆b

τ,1

)
= ac(σ) ·

(
∆b

σ,1ιb(bc(τ))
)
∆b

τ,1

= ac(σ) · ∆b
σ,σ(bc(τ)) ∆

b
τ,1

= ac(σ)σ(b)σ(c(τ)) · ∆b
σ,1∆

b
τ,1

= ac(σ)σ(b)σ(c(τ))b(σ, τ) · ∆b
στ,1

= c(σ)σ(c(τ)) · ∆b
στ,aσ(b)b(σ,τ)

= c(σ)σ(c(τ)) · ∆b
σ,a∆

b
τ,b.

Hence ϕ is actually an F-algebra isomorphism between Ca and Cb and isomorphic central simple
F-algebras are certainly Brauer equivalent.

4.4.4 H2 ◦C and C ◦H2

For a finite dimensional Galois extension of field K/F, we have constructed two functions H2

and C between the second cohomology group H2 (Gal(K/F), K⋆) and the relative Brauer group
Br(K/F). In this section, we prove that they are mutual inverse to one another,

Lemma 4.4.25. The composition of C and H2 is the identity:

H2 (Gal(K/F), K⋆) Br(K/F) H2 (Gal(K/F), K⋆) .C

id

H2

Proof. Let a be any 2-cocycle, by lemma 4.4.15, we notice that x : σ 7→ ∆σ,1 is a conjugation
sequence for Ca. Hence by construction 4.4.3, ?? and theorem 4.4.24, we evaluate the composition
at a as:

[a] [Ca]∼Br

[
(σ, τ) 7→ compx

∆σ,1,∆τ,1,∆στ,1

]
.

That is, we need to show that a and (σ, τ) 7→ comp∆σ,1,∆τ,1,∆στ,1
are 2-cohomologous. In fact,

they are equal. By construction 4.4.2, we have that ιCa

(
compx

∆σ,1,∆τ,1,∆στ,1

)
= ∆σ,1∆τ,1∆

−1
στ,1 =

a(σ, τ) · ∆στ,1∆
−1
στ,1 = a(σ, τ) · 1 = ∆id,a(σ,τ) which is precisely ιCa

(a(σ, τ)).

Lemma 4.4.26. The composition of H2 and C is the identity:
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Br(K/F) H2 (Gal(K/F), K⋆) Br(K/F)H2

id

C .

Proof. Let X ∈ Br(K/F), A be an arbitrary good representation of X and x be an arbitrary A-
conjugation sequence which exists by corollary 4.3.4 and construction 4.3.4. By definition 4.3.1,
X = [A]∼Br

. Hence by ?? and theorem 4.4.24, we evaluate the composition at X as:

[A]∼Br

[
B2

x

] [
CB2

x

]
.

Hence we need to prove that A and CB2
x

are Brauer equivalent. We will show that they are
isomorphic as F-algebras. since {xσ|σ ∈ Gal(K/F)} is a K-basis for A and {∆σ,1|σ ∈ Gal(K/F)}
is a K-basis for CB2

x
, they are certainly isomorphic as K-modules. Let ϕ : CB2

x

∼= A be the
K-linear isomorphism defined by ∆σ,1 7→ xσ, since the K-action on A and the F-action on A are
compatible (construction 4.3.2), ϕ is also an F-linear isomorphism. Like in theorem 4.4.24, we
check that ϕ(1) = 1 and ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ A:

1. preservation of one: by construction 4.4.2, we have

ϕ(1) = ϕ
(
∆id,B2

x(id,id)−1

)
= B2

x(id, id)−1ϕ (∆id,1)

= B2
x(id, id)−1xid

= comp−1
xid,xid,xid xid

= compxid,xid,xid xidxidx
−1
id

= xidx
−1
id

= 1.

2. preservation of multiplication: let σ, τ ∈ Gal(K/F) and c, d ∈ K, by construction 4.4.2
and definition 4.3.3, we have

ϕ (∆σ,c∆τ,d) = ϕ
(
∆στ,cσ(d)B2

x(σ,τ)

)
= cσ(d)B2

x(σ, τ) · ϕ (∆στ,1)

= cσ(d)B2
x(σ, τ) · xστ

= cσ(d) compxσ,xτ,xστ
· xστ

= cσ(d) · ιA
(
compxσ,xτ,xστ

)
xστ

= cσ(d) · xσxτ
ϕ (∆σ,c)ϕ (∆τ,d) = (c · ϕ (∆σ,1)) (d · ϕ (∆τ,1))

= (c · xσ) (d · xτ)
= c · xσιA(d)xτ
= cσd · xσxτ.

Corollary 4.4.27. For a finite dimensional and Galois extension of field K/F, the relative Brauer
group K/F bijects to the second cohomology group H2 (Gal(K/F), K⋆) by the following commu-
tative diagram
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Br(K/F) H2 (Gal(K/F), K⋆)

Br(K/F) H2 (Gal(K/F), K⋆)

H2

C

.

Proof. Exactly lemma 4.4.25 and lemma 4.4.26.

4.4.5 Group Homomorphism
In previous sections, when K/F is a finite dimensional Galois extension, we have set up a bijection
between the relative Brauer group Br(K/F) and the second cohomology group H2 (Gal(K/F), K⋆).
But both functions H2 and C are only set-theoretical function. In this section, we aim to upgrade
them to group homomorphisms. Technically, we only need to prove either one of them preserves
multiplication; we provide a proof that H2 preserves one anyway because we found the proof to
be entertaining.

C1 = 1 and H2(1) = 1

Theorem 4.4.28. The function C : H2 (Gal(K/F), K⋆)→ Br(K/F) preserves one, that is C

Proof. Since {∆σ,1|σ ∈ Gal(K/F)} is a K-basis for C1 where 1 ∈ B2 (Gal(K/F), K⋆) is the constant
function 1 (lemma 4.4.17), we construct a K-linear map ϕ : C1 → EndF K by ∆σ,1 7→ σ; note
that ϕ is F-linear as well. In fact, ϕ is also an F-algebra homomorphism:

1. ϕ(1) = 1: indeed ϕ (∆id,1) = id.

2. ϕ(xy) = ϕ(x)ϕ(y): indeed, let σ, τ ∈ Gal(K/F) and c, d ∈ K, we need to check that
ϕ (∆σ,c∆τ,d) = ϕ (∆σ,c)ϕ (∆τ,d). The left hand side is equal to

ϕ
(
∆στ,cσ(d)

)
= ϕ (cσ(d) · ∆στ,1) = cσ(d) · στ;

and the right hand side is equal to

ϕ (c · ∆σ,1)ϕ (d · ∆τ,1) = (c · σ)(d · τ).

For any x ∈ K, applying left hand side to x will result in cσ(d)σ(τ(x)) while right hand
side will result in cσ(dτ(x)), hence both sides are equal.

Hence, ϕ is an F-algebra isomorphism by corollary 1.1.8; that is we have C1
∼= EndF K ∼=

MatdimF K(F). We conclude that C1 is Brauer equivalent to F and consequently H2(1) = 1.

Corollary 4.4.29. The function H2 : Br(K/F)→ H2 (Gal(K/F), K⋆) preserves one, that is H2(1) =

1.

Proof. Apply C then use lemma 4.4.26 and theorem 4.4.28.
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Cab ∼Br Ca⊗F Cb

The argument in this section is more complicated, because, unlike before, the left hand side
and the right hand side are not isomorphic as F-algebras — left hand side has F-dimension
(dimF K) while the right hand side has F-dimension (dimF K)

4. Let a and b be two 2-cocycles
in B2 (Gal(K/F), K⋆), we denote c to be the 2-cocycle ab. Intuitively, Ca⊗F Cb is too “big”, to
address this issue we introduce a quotient module.

Construction 4.4.10 (M). Consider the quotient module

M := Ca ⊗F Cb/⟨(k·a)⊗b−a⊗(k·b)|k∈K,a∈Ca,b∈Cb⟩.

For any a ′ ∈ Ca and b ′ ∈ Cb, we can define an F-linear map M→M by descending the F-linear
map Ca⊗F Cb → Ca⊗Cb

a⊗ b 7→ aa ′ ⊗ bb ′;

we need to check that for all k ∈ K, a ∈ Ca, b ∈ Cb, the image of (k · a) ⊗ b − a ⊗ (k · b) is
in 〈(k · a)⊗ b− a⊗ (k · b)|k ∈ K, a ∈ Ca, b ∈ Cb〉: the image is (k · aa ′) ⊗ b − a ⊗ (k · bb ′)

which is in the generating set with k ∈ K, aa ′ ∈ Ca, and bb ′ ∈ Cb. This map is in fact F-linear
in both a ′ and b ′, hence we have an F-bilinear map Ca⊗Cb → M → M. This gives M a
(Ca⊗F Cb)

opp-module structure given by

(a ′ ⊗ b ′) · [a⊗ b] = aa ′ ⊗ bb ′

for any a, a ′ ∈ Ca and b, b ′ ∈ Cb. All of the module axioms in this case follows from F-bilinearity.
For any c ∈ Cc, we can define another F-linear map M→M by descending the F-linear map

Ca⊗F Cb → Ca⊗Cb

a⊗ b 7→
∑

σ∈Gal(K/F)

∆a
σ,c(σ)a ⊗ ∆b

σ,1b;

we need check that for all k ∈ K, a ∈ Ca, b ∈ Cb, the image of (k · a) ⊗ b − a ⊗ (k · b) is in
〈(k · a)⊗ b− a⊗ (k · b)|k ∈ K, a ∈ Ca, b ∈ Cb〉: by lemma 4.4.15 the image is∑

σ∈Gal(K/F)

∆a
σ,c(σ)(k · a) ⊗ ∆b

σ,1b− ∆a
σ,c(σ)a ⊗ ∆b

σ,1(k · b)

=
∑

σ∈Gal(K/F)

∆a
σ,c(σ)ιa(k)a ⊗ ∆b

σ,1b− ∆a
σ,c(σ) ⊗ ∆b

σ,1ιb(k)b

=
∑

σ∈Gal(K/F)

σ(k) · ∆a
σ,c(σ)a ⊗ ∆b

σ,1b− ∆a
σ,c(σ) ⊗ σ(k) · ∆b

σ,1b,

which is in 〈(k · a)⊗ b− a⊗ (k · b)|k ∈ K, a ∈ Ca, b ∈ Cb〉 because for each σ ∈ Gal(K/F), the
summand is in the generating set with σ(k) ∈ K,∆a

σ,c(σ)a ∈ Ca and ∆b
σ,1b ∈ Cb. This map is in

fact F-linear in c, therefore we have an F-bilinear map Cc →M→M. (In the above calculation
“⊗” symbol has low precedence.) This gives M a Cc-module structure given by

c · [a⊗ b] =

 ∑
σ∈Gal(K/F)

∆a
σ,c(σ)a⊗ ∆b

σ,1b

 .

In particular, if c is of the form k ·∆c
τ,1, then (k · ∆c

τ,1) · [a⊗ b] is equal to
[
(k · ∆a

τ,1)a⊗ ∆b
τ,1b

]
because ∆c

τ,1(σ) = 0 for all σ 6= τ. Two of the module axioms need more than F-bilinearity:
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• c = 1: note that c = 1 = b(id, id)−1a(id, id)−1 · ∆c
id,1, hence

1 · [a⊗ b] = [b(id, id)−1a(id, id)−1∆a
id,1a⊗ ∆b

id,1b]

= [∆a
id,a(id,id)−1a⊗ ∆b

id,b(id,id)−1b]

= [a⊗ b].

• c1c2 · [a ⊗ b] = c1 · c2 · [a ⊗ b]: assume c1 = k1 · ∆c
τ1,1

and c2 = k2 · ∆c
τ2,1

. Then
c1c2 = k1τ1 (k2) ·∆c

τ1τ2,c(τ1,τ2)
= k1τ1 (k2) a(τ1, τ2)b(τ1, τ2) ·∆c

τ1τ2,1
. Therefore, the left

hand side is equal to[(
k1τ1(k2)a(τ1, τ2)b(τ1, τ2) · ∆a

τ1τ2,1

)
a⊗ ∆b

τ1τ2,1
b
]

=
[
k1τ1(k2)a(τ1, τ2) · ∆a

τ1τ2,1
a⊗ b(τ1, τ2)∆

b
τ1τ2,1

b
]

=
[
∆a

τ1,k1
∆a

τ2,k2
a⊗ ∆b

τ1,1
∆b

τ2,1
b
]

;

and the right hand side is also equal to(
k1 · ∆c

τ1,1

) [
k2 · ∆a

τ2,1
a⊗ ∆b

τ2,1
b
]

=
[(
k1 · ∆a

τ1,1

) (
k2 · ∆a

τ2,1

)
a⊗ ∆b

τ1,1
∆b

τ2,1
b
]

=
[
k1τ1(k2) · ∆a

τ1τ2,a(τ1,τ2)
a⊗ ∆b

τ1,1
∆b

τ2,1
b
]

=
[(
k1 · ∆a

τ1,1

) (
k2 · ∆a

τ2,1

)
a⊗ ∆b

τ1,1
∆b

τ2,1
b
]
.

Expanding everything out and checking on the basic elements, we see that for any x ∈
(Ca⊗F Cb)

opp, y ∈ Cc and z ∈M, x ·y · z = y ·x · z. In another word, we gave M a (Cc,Ca⊗F Cb)-
bimodule structure.

Lemma 4.4.30. M is isomorphic to Ca⊗K Cb as F-modules.

Proof. The map M→ Ca⊗K Cb is obtained by descending the obvious F-linear map Ca⊗F Cb →
Ca⊗K Cb. By universal property of tensor product, there is an additive group homomorphism
Ca⊗K Cb →M given by a⊗ b 7→ [a⊗ b], this map is in fact F-linear. The two maps are inverse
to each other.

Corollary 4.4.31. The F-dimension of M is equal to (dimF K)
3, consequently M is a finitely

generated Cc-module.

Proof. By lemma 4.4.30, the dimension of M is equal to dimF Ca⊗K Cb = dimK Ca⊗K Cb dimF K.
By lemma 4.4.17, dimK Ca = dimK Cb = dimF K.

Construction 4.4.11. By lemma 2.2.2, there exists some simple Cc-module S such that Cc is
isomorphic to

⊕
i∈J S as Cc-module for some indexing set J. If we give S the F-module structure

by pulling back the Cc-module structure, by restricting scalars Cc is isomorphic to
⊕

i∈J S as F-
module as well. Since Cc is a finite dimensional F-vector space, J must be finite as well. Note that
S must be a finite dimensional F-vector space, because S is finitely generated as Cc-module and
Cc has finite F-dimension. The indexing set J must be nonempty, otherwise Cc being isomorphic
to
⊕

∅ S is a trivial ring; but simple rings are non-trivial. Since J is finite, direct sum over J and
direct product over J agree. Recall construction 3.1.1 and construction 3.1.2, for all non-zero
m ∈ N, we have

EndCc
(Sm) ∼= Matm (EndCc

S)
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as F-algebras, hence

Copp
c

∼= EndCc
Cc

∼= EndCc
S|J| ∼= Mat|J| (EndCc

S)

as F-algebras. Finally
Cc

∼= Mat|J| (EndCc
(S)opp)

as F-algebras.

Corollary 4.4.32.
(dimF K)

2 = |J|2 dimF EndCc
S.

Proof. They are both equal to dimF Cc by construction 4.4.11.

Corollary 4.4.33.
|J|dimF S = (dimF K)

2

Proof. They are all equal to dimF Cc = dimF S
|J| by construction 4.4.11.

Lemma 4.4.34. There exists a Cc-linear isomorphism between M and S|J|dimF K.

Proof. By lemma 2.2.4, we only need to show that dimF M = dimF S
|J|dimF K. We already have

dimF M = (dimF K)
3 by corollary 4.4.31. We also have dimF S

|J|dimF K = |J|dimF KdimF S =

dimF K (|J|dimF S) = dimF K (dimF K)
2 by corollary 4.4.33.

Corollary 4.4.35. As F-vector spaces, M ∼= S|J|dimF K.

Proof. Restricting scalars on the Cc-linear isomorphism in lemma 4.4.34

Corollary 4.4.36. As F-algebras, EndCc
M ∼= Mat|J|dimF K(EndCc

S).

Proof. From corollary 4.4.35, we have EndCc
M ∼= EndCc

(
S|J|dimF K

)
. By construction 3.1.2,

they are isomorphic to Mat|J|dimF K(EndCc
S).

Corollary 4.4.37.
dimF EndCc

M = (dimF K)
4
.

Proof.
dimF EndCc M = dimF Mat|J|dimF K(EndCc

S)

= dimF

(
EndCc

S⊗F Mat|J|dimF K(F)
)

= |J|2 (dimF K)
2 dimF EndCc

S

= (dimF K)
2
(
|J|2 dimF EndCc

S
)

= (dimF K)
2 (dimF K)

2
,

where the last equality is by corollary 4.4.32.

Theorem 4.4.38. The cross product Cc and the tensor product Ca⊗F Cb are Brauer equivalent.
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Proof. We define an F-algebra homomorphism ϕ : (Ca⊗F Cb)
opp → EndCc

M by x 7→ (x · •).
By corollary 4.4.37, both sides has F-dimension (dimF K)

4, therefore, ϕ is an F-algebra iso-
morphism by corollary 1.1.8. Hence we have another F-algebra isomorphism by composing the
isomorphism in corollary 4.4.36:

ϕopp : Ca⊗F Cb
∼= (EndCc

M)opp ∼= Mat|J|dimF K ((EndCc
S)opp) .

In the meantime, by construction 4.4.11, we have Cc
∼= Mat|J| ((EndCc

S) opp); hence MatdimF K (Cc)

is isomorphic to Ca⊗F Cb.

Corollary 4.4.39 (group isomorphism). For a finite dimensional Galois field extension K/F, the
relative Brauer group Br(K/F) is isomorphic to the second group cohomology H2 (Gal(K/F), K⋆).

Proof. In corollary 4.4.27, we have seen that H2 and C form a bijection, thus it is sufficient to
check either one of them preserves multiplication. The function C : H2 (Gal(K/F), K⋆) preserves
multiplication: let [a], [b] be two elements in H2 (Gal(K/F), K⋆), by theorem 4.4.38,C(ab) is indeed
Brauer equivalent to C(a)⊗F C(b) that is

[Ca]∼Br
[Cb]∼Br

= [Cab] .
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