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Preface

In this exposition, we describe a excruciatingly detailed proof of the following theorem:

Theorem. For a finite dimensional and Galois field extension K/F, the relative Brauer group
Br(K/F) is isomorphic to the second group cohomology H? (Gal(K/F), K*).

The reason for the detailed-ness is because we are aiming to formalise the proof described in the
following chapters; therefore the more details, the better. We apologise for the unconventional
organisation in advance — earlier chapters sometimes use results from later chapter. For our
defence, we try to categorise all the results by topics and, since this is a formalisation project,
we can guarantee the readers that there is no circular reasoning.



Chapter 1

Central Simple Algebras

1.1 Basic Theory

In this chapter we define central simple algebras. We used some results in section 3.1.

Definition 1.1.1 (Simple Ring). A ring R is simple if the only two-sided-ideals of R are 0 and R.
An algebra is simple if it is simple as a ring.

Remark 1.1.1. Division rings are simple.
Lemma 1.1.2. Let A be a simple ring, then centre of A is a field.

Proof. Let O # x be an element of centre of A. Then I :={xyly € A} is a two-sided-ideal of A.
Since 0 #£ x € I, we have that I = A. Therefore 1 € I, hence x is invertible. O

Definition 1.1.2 (Central Algebras). Let R be a ring and A an R-algebra, we say A is central if
and only if the centre of A is R

Remark 1.1.3. Every commutative ring is a central algebra over itself.

Remark 1.1.4. Simpleness is invariant under ring isomorphism and centrality is invariant under
algebra isomorphism.

Lemma 1.1.5. If A is a central R-algerba, A°PP is also central. .

Lemma 1.1.6. R is a simple ring if and only if any ring homomorphism f: R — S either injective
or S is the trivial ring.

Proof. If R is simple, then the ker f is either {0} or R. The former case implies that f is injective
while the latter case implies that S is the trivial ring. Conversely, let I C R be a two-sided-ideal.
Consider 7t : R — R/{, either 7t is injective implying that I = {0} or that R/ is the trivial ring
implying that I = R. O

Remark 1.1.7. If A is a simple R-algebra, “ring homomorphism” in lemma 1.1.6 can be replaced
with R-algebra homomorphism.

Corollary 1.1.8. Assume R is a field. Let A, B be finite dimensional R-algebras where A is simple
as well. Then any R-algebra homomorphism f: A — B is bijective if dimg A = dimpg B.



Proof. By lemma 1.1.6, fis injective. Then dimy im f = dimg B — dimy ker f = dimg B meaning
that f is surjective. O

Let K be a field and A, B be K-algebras.
Lemma 1.1.9. If A and B are central K-algebras, A ®k B is a central K-algebra as well.

Proof. Assume A and B are central algebras, then by corollary 3.1.7 Z(A ®r B) = Z(A) ®r
Z(B)=R®rR=R. O

Theorem 1.1.10. If A is a simple K-algebra and B is a central simple K-algebra, A ® B is a
central simple K-algebra as well.

Proof. By lemma 1.1.9, we need to prove A ®x B is a simple ring. Denote f as the map A —
A®kB. It is sufficient to prove that for every two-sided-ideal | C A®yB, we have I = <f (fq (I))>
Indeed, since A is simple ' (I) is either {0} or A, if it is {0}, then I ={0}; if it is A, then I is A
as well.

We will prove that I < (f (f~' (I))), the other direction is straightforward. Without loss of
generality assume I # {0}. Let A be an arbitrary basis of A, by lemma 3.1.1, we see that every
element x € A ®x B can be written as ) ;" ; A; ® by for some natrual number n and some choice
of by € B and A; € A. Since I is not empty, we see there exists a non-zero element w € I
such that its expansion ) ;- ,A; @ by has the minimal n. In particular, all b; are non-zero and
n#0. We have w = Ao ®bo + Y i~ Ai ® bi. Since B is simple, 1 € B = ((bo); hence we write
1e Z]-";O xiboy; for some xi,y; € B. Define Q := Zj"loﬂ ®xi)w(1 ®yi) which is also in I. We
write

m n m
Q=Ay® Zijoy]' +Z~Ai® Zijin
j=0 i=1 j=0
n m
:AO®]+ZAi® Zijiyj
i=1 j=0
For every B € B, we have that (1® ) Q —Q(1® ) is in I and is equal to
n m
ZAi ® Z Bx;biy; —x;biy;B |,
i=1 j=0

which is an expansion of n — 1 terms, thus (1® ) Q — Q (1 ® B) must be 0. Hence we conclude
that for all i =1,...,m, 3" xjbiyj € Z(B) = K. Hence for all i = 1,...,n, we find a k; € K
such that k; = Z]-Tlo x;biy;. Hence we can calculate () as

n m
Q:AO®1+Z~A1® Z
im1 i—o

=Ao@T+) Ai®x

i=1

= <Ao+iKi"Ai> ® 1
i=1



From this, we note that Ag + Y | ki -Ai € f~1(I); since A is simple, we immediately conclude
that =1 (I) = A, once we know Ao + > i ; ki - A; is not zero. If it is zero, by the fact that A is
a linearly independent set, we conclude that 1,kq,..., Kk are all zero; which is a contradiction.
Since =1 (I) = A, we know <f (f”I)) =A ®x B. O

Corollary 1.1.11. Central simple algebras are stable under base change. That is, if L/K is a field
extension and D is a central simple algebra over K, then L ®x D is central simple over L.

Proof. By theorem 1.1.10, L @« D is simple. Let x € Z(L ®g D), by corollary 3.1.7, we have
x € Z(L)® Z(D) = Z(L). Without loss of generality, we can assume that x =1 ® d is a pure
tensor, then 1 € Z(L) and d € K. Therefore x=d-1 € L. O

Theorem 1.1.12. If A ®k B is a simple ring, then A and B are both simple.

Proof. By symmetry, we only prove that A is simple. If A or B is the trivial ring then A ®x B is
the trivial ring, a contradiction. Thus we assume both A and B are non-trivial. Suppose A is not
simple, by lemma 1.1.6, there exists a non-trivial K-algebra A’ and a K-algebra homomorphism
f: A — A’ such that ker f # {0}. Let F: A ®< B — A’ ®k B be the base change of f, then since
A ®x B is simple and A’ ® B is non-trivial (A’ is non-trivial and B is faithfully flat because B is
free), we conclude that F is injective. Then we have that

025 A@kB —5 A’@¢B
is exact. Since B is faithfully flat as a K-module, tensorig with B reflects exact sequences, therefore
025 AT A

is exact as well. This is contradiction since f is not injective. O

1.2 Subfields of Central Simple Algebras

Definition 1.2.1 (Subfield). For any field K and K-algebra A, a subfield B C A is a commutative
K-subalgebra of A that is closed under inverse for any non-zero member.

Remark 1.2.1. Subfields inherit a natural ordering from subalgebras.

Let K be any field and D a finite dimensional central division K-algebra and A a finite
dimensional central simple algebra of A.

Lemma 1.2.2. Let k be a maximal subfield of D,
dimg D = (dimg k)?.

Proof. By lemma 3.4.11, we have that dimg D = dimg Cp (k) - dimy k. Hence it is sufficient to
show that Cp (k) = k. By the commutativity of k, we have that k < Cp (k). Suppose k # Cp (k):
let a € Cp(k) that is not in k. We see that L := k(a) is another subalgebra of D that is strictly
larger than k; a contradiction. Therefore k = Cp (k) and the theorem is proved. O

Lemma 1.2.3. Suppose L is a subfield of A, the following are equivalent:

1. L=Ca(L)



2.

3.

dimg A = (dimy L)?

for any commutative K-subalgebra L’ C A, L C L’ implies L =L’

Proof. We prove the following:

“1. implies 2.”: this is lemma 3.4.11.

“2. implies 1.”: Since L is commutative, we always have L C Ca(L). Hence we only
need to show dimg L = dimg Ca(L). This is because by lemma 3.4.11, we have that
dimg A = dimg L - dimg Ca (L) and by 2. we have dimg L - dimg Ca (L) = dimy L - dimy L.

“2. implies 3.”: Since 2. implies 1., we assume L = C (L), therefore all we need is to prove
L’ C Ca(L). Let x e L’ and y € L C L/, we need to show xy = yx which is commutativity
of L'.

“3. implies 1.”: By commutativity of L, we always have L C Ca (L). For the other direction,
suppose Ca (L) € L, then there exists some a € Ca(L) but not in L. Consider L’ = L(a),
by 3., we have L’ = L which is a contradiction.

O



Chapter 2

Morita Equivalence

This chapter intertwine with section 3.2: section 2.2 depends on section 3.2.1; while section 3.2.2
depends on section 2.2.

2.1 Construction of the equivalence

Let R be a ring and 0 # n € N. In this chapter, we prove that the category R-modules and
the category of Mat, (R)-modules are equivalent. Then we use the equivalence to prove several
useful lemmas.

Construction 2.1.1. If M is an R-module, we have a natural Mat,, (R)-module structure on M=
M™ given by (my;) - (Vi) = Z]- my -vj. If f: M — N is an R-linear map, then fiMm - NP
given by (vi) — (f(vi)) is a Maty, (R)-linear map. Thus we have a well-defined functor 9todgr —-
Modp1at,, (R)-

Remark 2.1.1. Note that all modules are assumed to be left modules; when we need to consider
right R-modules, we will consider left R°°P-modules instead. We use di; to denote the matrix
whose (i,j)-th entry is 1 and 0 elsewhere. 8i; forms a basis for matrices.

Construction 2.1.2. If M is a Maty, (R)-module, then M = {645 - m/m € M} C M is an R-module
whose R-action is given by v - (835 - m) := (v - 8i5) - m. More over if f : M — N is a Mat, (R)-
linear map, f: M — N given by the restriction of f is R-linear. Hence, we have a functor
mUOMatn(R] = Moog.

Theorem 2.1.2 (Morita Equivalence). The functors constructed in construction 2.1.1 and con-
struction 2.1.2 form an equivalence of category.

Proof. Let M be an R-module, then the unit M =M is given by
X = Z X
j
(%,0y...,0) <= x

Let M be an Mat,, (R)-module, then the counit M =M is given by m — (8io - m). This map
is both injective and surjective. O



2.2 Stacks 074E

Let A be a finite dimensional simple k-algebra.
Lemma 2.2.1. Let M and N be simple A-modules, then M and N are isomorphic as A-modules.

Proof. By theorem 3.2.6, there exists non-zero n € N, k-division algebra D such that A
Mat, (D) as k-algebras. Then by theorem 2.1.2, we have equivalence of category e : ModA
Modp. Since simple module is a categorical notion (it can be defined in terms monomorphisms),
e(M) and e(N) are simple D-modules. Since D is a division ring, e(M) and e(N) are isomorphic
as D-modules, therefore M and N are isomorphic as A-modules.

~
~

O

Lemma 2.2.2. Let M be an A-module, there exists a simple A-module S such that M is a direct

sum of copies of S, i.e. M = D, S for some indexing set t.

i€
Proof. By theorem 3.2.6, there exists non-zero n € N, k-division algebra D such that A
Mat, (D) as k-algebras. Then by theorem 2.1.2, we have equivalence of category e : ModA
Modp. Since simple module is a categorical notion (it can be defined in terms monomorphisms),
e~ (D) is a simple module over A. Since e(M) is a free module over D, we can write e(M)
as @i, D for some indexing set 1. By precomposing the unit of e, we get an isomorphism
M = e ! (@;c, D). We only need to prove e~' (;c, D) = @;., e ' (D). This is because
direct sum is the categorical coproduct. O

~
~

Remark 2.2.3. Note that by lemma 2.2.1, any two simple A-module are isomorphic, hence for
any A-module M and any simple A-module S, we can write M as a direct sum of copies of S.

Lemma 2.2.4. Let M and N be two finite A-module with compatible k-action. Then M and N
are isomorphic as A-module if and only if dimy M and dimy N are equal.

Proof. The forward direction is trivial as an A-linear isomorphism is a k-linear isomorphism as
well. Conversely, suppose dimy M = dimy N. By lemma 2.2.2, there exists a simple A-module
S such that M = @;., S and N = .,/ S as A-modules. Without loss of generality S # 0, for
otherwise we have M = N anyway. If either of ¢ or (/ is empty, then dimy M = dim N = 0
implying that M = N = 0, we again have M = N. Thus, we assume both t and (' are non-
empty. By pulling back the A-module structure on S to a k-module structure along k — A,
M,N, S, PD;ic. S, P;c./ S are all finite dimensional k-vector spaces. Hence t and " are finite. The
equality dimg M = dimy N tells us that ¢ = ' as set, hence M = @;., S = @i, S = N as
required. O

Let A = Mat, (D) as k-algebras for some k-division algebra and n # 0.

Lemma 2.2.5. D™ is a simple A-module where the module structure is given by pulling back the
Maty (D)-module structure of D™.

Proof. By theorem 2.1.2, we have MModa = Modp = Modypa, (D). Since D is a simple D-module,
D™ is a simple Mat,, (D) module and consequently, a simple A-module. O

Remark 2.2.6. Note that any A-linear endomorphism of D™ is Mat,, (D)-linear, and vice versa.
Thus we have Enda (D™) = Endyas,, (D) (D™) as k-algebras.

Lemma 2.2.7. Enda (D™) is isomorphic to DPP as k-algebras.



Proof. Indeed, we calculate:

Enda (Dn) = EndMatn(D) (Dn)

= Endp D by theorem 2.1.2, 9odp = Modpjat,, D
~ DoPP

Lemma 2.2.8. Let M be a simple A-module, then Endax M = D°PP as k-algebras.

Proof. By theorem 2.1.2, D™ is simple as A-module; hence by lemma 2.2.1, D™ and M are
isomorphic as A-module. Lemma 2.2.7 gives the desired result. O

Remark 2.2.9. In particular, if M is a simple A-module, then Enda M is a simple k-algbera.
Lemma 2.2.10. Let M be a simple A-module, then Enda M has finite k-dimension.

Proof. By theorem 3.2.4, such D and n always exists. Hence we only need to show D°PP has
finite k-dimension. Since dimy A = dimy Mat,, (D) are both finite, we conclude D°PP is finite as
a k-vector space by pulling back the finiteness along D < Mat,, (D). O

Remark 2.2.11. Note that for all A-module M, Endgna, m M is a k-algebra as well, with k —
Endgna, m M given by a — (x — a-x). Thus, we always have a k-algebra homomorphism
A — Endgnda, m M given by the A-action on M. When A is a simple ring, this map is injective.

Definition 2.2.1 (Balanced Module). For any ring A and A-module M, we say M is a balanced
A-module, if the A-linear map A — Endgna, m M is surjective.

Remark 2.2.12. Balancedness is invariant under linear isomorphism.

Lemma 2.2.13. For any ring A, A is balanced as A-module.

Proof. If f € Endgna, m A, then the image of f(1) under A — Endg,q, A is f again. O
We assume again that A is a finite dimensional simple k-algebra.

Lemma 2.2.14. Any simple A-module is balanced.

Proof. Indeed, if M is a simple A-module, then A = @, ., M for some indexing set t by lemma 2.2.2.
Since A is balanced, @ie M is balanced. Let g € Endgna, m M, we can define a corresponding
G € Endgndg, v (; M) by sending (vi) to (g(vi)). Since @; M is balanced, we know that for
some a € A, G is the image of a under A — EndEmdGBi v (B; M). Then the image of a under
A—)EndEndAMMiS g. O

Lemma 2.2.15. For any simple A-module M, we have A = Endgnq, m M as k-algebras.

Proof. The canonical map A — Endgnq, m M is both injective and surjective, as M is a balanced
A-module and A is a simple ring. O



Chapter 3

Results in Noncommutative Algebra

3.1 A Collection of Useful Lemmas

In section, we collect some lemmas that does not really belong to anywhere.

3.1.1 Tensor Product

Lemma 3.1.1. Let M and N be R-modules such that Ci¢, is a basis for N, then every elements of
X € M®g N can be uniquely written as ) ;. m{ ® C; where only finitely many m;’s are non-zero

Proof. Given the basis €, we have R-linear isomorphism N = @iEL R, hence M®@rN = @iEL(M®R
R) = @P;c, M as R-modules. O

By switching M and N, the symmetric statement goes without saying.

Lemma 3.1.2. Let K be a field, M and N be flat K-modules. Suppose p € M and q C N are
K-submodules, then (p ®x N) M (M ®k q) = p ®k q as K-submodules.

Proof. The hard direction is to show (p ®r N) M (M ®g q) < p ®r . Consider the following
diagram:

pOkq —— Mok q —— M/, ®kq

l- J p

Pk N 25 Mag N Y- M/ @ N

Since M/, is flat, v is injective. Let z € (p ®r N) M (M ®g q) = imp Mimu’. By abusing
notation, replace z with some elements of M ®x q and continue with B(z) € im 3 Mimu’. Since
v/(B(z)) =v(v(z)) and that B(z) € imu’, we conclude that y(v(z)) = 0, that is z € kerv = imu.
We abuse notation again, let z € p®x q, we need to show B(w(z)) € im BMimu’, but fou = u'ox,
we finish the proof. O

10



3.1.2 Centralizer and Center

Let R be a commutative ring and A, B be two R-algebras. We denote centralizer of S C A by
CaS and centre of A by Z(A).

Lemma 3.1.3. Let S, T be two subalgebras of A, then CA(SUT) = Ca(S)MCa(T).
This lemma can be generalized to centralizers of arbitrary supremum of subalgebras.

Lemma 3.1.4. If we assume B is free as R-module, then for any R-subalgebra S, we have that
CA®RB (1m (S — A ®Rr B)) is CA(S) ®r B

A symmetric statement goes without saying.

Proof. Let w € Caggp (im (S — A ®g B)). Since B is free, we choose an arbitrary basis B;
by lemma 3.1.1, we write w = ) ; my ®k Bji. It is sufficient to show that my € Ca(S) for all 1.
Let a € S, we need to show that mi-a = a-my. Since w is in the centralizer, w-(a®1) = (a®1)-w.
Hence we have ) ;(a-m;{)®@B; = ) ;(mi-a)®@B;. By the uniqueness of lemma 3.1.1, we conclude
a-mi =m4- Q. O

Remark 3.1.5. A useful special case is when S = A, then since Ca(A) = Z(A), we have
Caggs (im (A — A ®g B)) isequal to Z(A)®gB. Sinceim (R®gr B -+ A ®g B) =im (A — A ®g B),
we conclude its centralizer in A ®g B is Z(A) ®x B.

Corollary 3.1.6. Assume R is a field. Let S and T be R-subalgebras of A and B respectively. Then
Cages (S®r T) is equal to CA(S) ®g Cp(T)

Proof. From lemma 3.1.2, CA(S) ®g Cg(T) is equal to (Ca(S) ®r B) M (A ®g Cg(T)). The left
hand side Ca(S) ®x B is equal to Cag,p (im (S — A ®g B)) and the right hand side is equal to
Caggs (im (T — A ®g B)). Hence by lemma 3.1.3, their intersection is equal to

CA®RB (1m (S — A ®gr B) L im (T — A ®r B))
This is precisely Cagyp (S ®r T). O
Corollary 3.1.7. Assume R is a field. The centre of A ®g B is Z(A) ®r Z (B).

Proof. Special case of corollary 3.1.6. O

3.1.3 Some Isomorphisms

Construction 3.1.1. Let R be a commutative ring and A an R-algebra. Then we have an R-algebra
homomorphism A ®g A°PP = Endr A given by a® 1 +— (a-e) and T® a — (e-a). When R
is a field and A is a finite dimensional central simple algebra, this morphism is an isomorphism
by corollary 1.1.8.

Construction 3.1.2. Let A be an R-algebra and M an A-module. We have isomorphism Enda (M™) =

Mat,, (Enda M) as R-algebras. For any f € Enda (M™), we define a matrix M whose (i,j)-th
entry is
x> f(0,...,%...,0);

1)

11



where x is at the j-th position. On the other hand, if M € Mat,, (Enda M), we define an A-linear
map f: M™ — M™ by

V= Z Mij\)j

j i
Construction 3.1.3. Let A be an R-algebra. Then Mat,, (Mat,(A)) = Mat;n(A). The trick is
to think Mat,, A as {0,...,m —1} x{0,...,m — 1} — A. Since the indexing set {0,...,mn — 1}
bijects with ({0,...,m — 1} x {0,...,n — 1}), the isomorphism is just function currying, function
uncurrying, precomposing and postcomposing bijections.

Construction 3.1.4. Let A,B be R-algebras. Then Mat, (A ®r B) = Matn(A) ®g Mat,, B as
K-algebras. We first construct R-algebra isomorphism A ®g Mat, (R) = Maty, (A):

a® 1~ diaga and 1 ® (my;) — (myj)

Zmij ® O = (myj),

1,J

where diag is the diagonal matrix and 8;; the matrix whose only non-zero entry is at (i,j)-th and
is equal to 1. Thus Mat, (A) ®g Mat,(B) = (A ®g B) ®r (Mat, (R) ®r Mat,, (R)) as R-algebra.
The Kronecker product gives us an R-algebra map Mat, (R) ®g Mat,, (R) — Matn (R). We want
this map to be an isomorphism. By lemma 1.1.6, we only need to prove it to be surjective: for all
8i5 € Matmn(R), we interpret Mat,n (R) as a function {0,...,m —1} x {0,...,n— 1} = R, then
8i; is the image of dqp ® 8cq € Maty, (R) ®g Maty, (R) where i = (a,c) and j = (b, d). Combine
everything together, we see Matn (A @g B) is isomorphic to Matn (A ®gr B) as R-algebras.

3.2 Wedderburn-Artin Theorem for Simple Rings

3.2.1 Classification of Simple Rings

Lemma 3.2.1 (minimal ideal of simple rings). Let A be a ring and I a non-trivial minimal left
ideal of A, then I is a simple A-module.

Proof. Let ] < I be an A-submodule of I, suppose | is non-trivial, we prove that ] = I. Then the
image ]’ of | under I < A is a non-trivial left ideal of A. Since I < A is injective, it is sufficient
to prove that J’ = I. This is because ]’ < T and J' £ J. O

Lemma 3.2.2. Let A be a simple ring and I a non-trivial left ideal. One can write 1 € A as
> o xiyi for some x; € I and y; € A.

Proof. Let I’ be the two-sided ideal spanned by I. Then since A is a simple ring, I’ = A. Thus
1 €TI’. One can write 1 € A as ) ; aix;b; for some x; € I and ai,b; € A, since I is a left ideal
aixi € I as well. O

Now, we can find the smallest n such that 1 € A can be written as ) ;- ,xiy; for some x; € I
and y; € A. Let us fix the notations n, x; and y;

Lemma 3.2.3. The n, x4 and y; are all non-zero.

12



Proof. If nis 0, then T =0 in A, but all simple rings are non-trivial. We argue by contradiction
to prove that all x; and y; are non-zero. Assume there exists a j such that y; # 0 implies x; = 0.
Without loss of generality, we assume j = 0. Then 1 =3 " ;xiyi = ) i~ xiyi. This contradicts
the minimality of n. O

Theorem 3.2.4 (Wedderburn). Let A be a simple ring and I a non-trivial minimal left ideal.
Then there exists a non-zero n € N such that A = I™ as A-modules.

Proof. We continue to write 1 = Z?:o XiY; in the shortest possible manner. Then we can define
an A-linear map g : I™ — A by (vi) — > viyi. Then g is surjective: if a € A, then (ax;) is
mapped to a under g. g is injective as well: support g(vi) = 0 = >_; viyi with (v;) not all
zero. Without loss of generality, we assume vy # 0, then the ideal (vo) is equal to I (since I
is simplelemma 3.2.1). Thus xo € I = (vo); implying that xo = 1-vo for some r € A. Thus
T=1-1-0=) 1 yXiYi—> i T-ViYi. In this way, we cancelled the term at i = 0, contradicting
the minimality of n. Hence g is an isomorphism. O

Theorem 3.2.5 (Wedderburn-Artin (Ideal)). Let A be an Artinian simple ring. There exists a
non-zero n and an ideal I C A such that I is simple as an A-module and A = I™ as A-module.

Proof. By theorem 3.2.4, we only need a minimal left ideal. Since A is Artinian, such ideal
exists. O

Theorem 3.2.6 (Wedderburn-Artin (Algebra)). Let K be a field and B an finite dimensional simple
algebra over K. There exists a non-zero n € N and a division K-algebra S such that B = Mat,, (S).

Proof. By theorem 3.2.5, we can find a n and a minimal left ideal I such A = I™ as A-modules.
Note that (Endg I)°?" is a division ring. Then since B°°P = Endg B = Endg (I") = Mat,, (Endg I)
as rings where the final isomorphism is from construction 3.1.2, we have e : B = Mat,, (Endg 1)°*"
as rings. We also have a K-algebra structure on (Endg I)°"" given by (a - f)(x) = f(a - x), and
this algebra structure promotes the ring isomorphism e to a k-algebra isomorphism. O

3.2.2  Uniqueness of the Classification

In the previous section, we know that finite dimensional simple K-algebra B over is in fact a
matrix algebras of a division K-algebra S. In this section, we prove that the division algebra S is
essentially unique.

Theorem 3.2.7 (Uniqueness of Wedderburn-Artin theorem). Let B be a finite-dimensional simple
K-algebra. Suppose B is isomorphic as k-algebras to both Mat,, (D) and Mat,.(D’) where n,n’
are non-zero natural numbers and D, D’ are k-division algebra, then n = n’ and D = D’ as
k-algebras.

Proof. Since D™ is a simple B-module, by lemma 2.2.8, we see that Enda D™ = D°PP and
Enda D™ = D/°PP as k-algebras. Thus D°PP = D’°PP as k-algebras, consequently D = D’ as
k-algebras as well. Since A = Mat,, (D) = Mat,,/(D’) = Mat,/(D) as k-algebras and A is finite
k-dimensional, a dimension argument shows that n =n’. O
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3.3 Skolem-Noether Theorem

Let K be a field, A, B be K-algebras where A is central simple and finite K-dimensional and B is
simple. Let M be a simple A-module.

Construction 3.3.1. For any K-algebra homomorphism f: B — A, we give M a B ®x Enda M-
module structure by defining (b ® 1) - m to be f(b) - 1(m). To emphasis f, we denote M with the
B ®k Enda M-module structure by M.

Lemma 3.3.1. Let f : B — A be a K-algebra homomorphism, M is finitely generated as a
B ®x Enda M-module.

Proof. Since M is a finite A-module and A a finite dimensional K-vector space, M is a finite
dimensional K-vector space as well. Suppose S C M generates M as K-module, the claim is that
S generates M as well. Let x € M', we write x = > i Ai-si with Ay € K and s; € S. Note that
Ai-si = (p(A1) @ 1pm) in MF where p : K — B is the map giving B its K-algebra structure. Hence
x is in the span of S in MF as well. O

Remark 3.3.2. Given that B is simple, any k-algebra homomorphism f : B — A injective; therefore
by finite K-dimensionality of A, B is finite K-dimensional as well.

Lemma 3.3.3. Let f,g : B — A be two K-algebra homomorphisms. Then M and M9 are
isomorphic as B ®x Enda M-module.

Proof. By lemma 2.2.4, it is sufficient to prove dimx Mf = dimx M9. But as K-vector space,
MF and M9 are literally M. O

Theorem 3.3.4 (Skolem-Noether). Let f,g : B — A be two K-algebra homomorphism. Then f
and g differ only by a conjugation. That is there exists a unit x € A* such that g = xfx .

Proof. Let M be any simple A-module (which exists by lemma 2.2.5). By lemma 3.3.3, we have
some isomorphism ¢ : M = M9 as Bk Enda M-module. Since M is simple, we have that M is a
balanced A-module by lemma 2.2.15. Let e denote the k-algerba isomorphism A = Endgna, m M
given by the A-action on M. Since both ¢ and ¢! defines an element of Endgnqg AM M, we
define a := e '(¢) and b := e '(¢p~"). Then ab = 1 since e(ab) = e(a) - e(b) = ¢! = 1.
We prove that the image of f and afb under e are the same; that is for all x € B and m € M,
e(g(x))(m) = e(af(x)b)(m). The right hand side is equal to

e(af(x)b)(m) = (e(a) o e(f(x)) o e(b)) (m)
= (¢oe(f(x)od ) (m)
= (f(x)- ¢~ (m))
Similarly, the left hand side is equal to g(x) - m. Note that ¢ is B ® Enda M-linear. Therefore
o) ((x ®1)-¢! (m)) = (x ® 1) -m. Unfolding the definition of M and M9, we see this is saying
precisely ¢ (f(x) -~ (m)) = g(x) - m. O
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3.4 Double Centralizer Theorem
In this section let F be a field and A an F-algebra. Define Lo C Endg A to be
{f: A — A|f(x) = ax for some a € A},

i.e. F-linear maps defined by left multiplication; similarly define R5. Note that £La and R are
F-subalgebras of Endr A. When we need to stree the underlying field is F, we also write £f and
iRFA. We assume A to be a finite dimensional central simple F-algebra.

Lemma 3.4.1. The centralizer of £ in Endf A is smaller than or equal to Ra:

Cendr A (LA) < Ra.

Proof. Indeed, let x € Cgpa, A (La). Recall from construction 3.1.1 that e : A @ A°PP = Endr A
as F-algebras. Then e~ '(x) is in Cag,aow (im (A — A ®F A%P)) (for e sends a ® 1 to the F-
linear map (a - e)). Since Cag;aor (im (A — A ®F A%P)) = Z(A) ®@F AP = F @F APP =
im (A°P — A ®f A%P), we find some y € A°PP such that 1®y = e~ '(x). Therefore e (1 ®y) = x;
but e (1 ®y) is in Ra for it is the linear map (o - y). O

Remark 3.4.2. For any F-algebra B, every element in Cgng, B (£8) is in fact Z(B)-linear. Let
X € Cgndr B (£B), z € Z(B) and b € B, we have x(z-b) = z- x(b) because x commutes with the
linear map (z - e).

Remark 3.4.3. A isa Z(A)-algebra whose algebra structure is given by Z(A) <— A. By lemma 1.1.2,
Z(A) is a field. A is finite dimensional as a Z(A)-module because of the tower A/Z(A)/F.

Lemma 3.4.4. As F-algebras, we have Rp = A°PP,

Proof. We prove the map A°PP — R, is bijective. It is injective because if (o - a) = (e - b), then
a=1-a=1-b=>b. The map is surjective by the definition of RA. O

Lemma 3.4.5. Let B be any simple F-algebra (not necessarily central). The centralizer of Lp in
Endr B is equal to Rg.

Proof. It is straightforward to show RE < CEnds A (LE). So we only need to prove Cgnd; A (LE) <
RE. By lemma 3.4.1, since B is a central simple finite dimensional Z(B)-algebra, we have that

Z(B Z(B
Chndy (s B (LB( )) <®g.

Suppose f € Endg B is in Cgng, 8B, by remark 3.4.2; f is Z(B)-linear as well. Then f is in Ré(B);
that is f is equal to (e - b) for some b € B as Z(B)-linear maps. Then f is also equal to (e - b) as
F-linear maps. O

Construction 3.4.1. Let B be any F-algebra and S C B an F-subalgebra. For any x € B*, we
have that xSx~' := {xsx~'|s € S} is an F-subalgebra of B as well. We have the obvious F-algebra
isomorphism S = xSx~! given by s + xsx~! and x'tx <= t. Therefore dimg S = dimp xSx '
and S is a simple ring if and only if xSx~! is a simple ring.

Lemma 3.4.6. Let B be any F-algebra, x € B* and S C B be an F-subalgebra of B, then
Ce(xSx~ 1) =x(Cg(S))x .
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Proof. If a € Cg (xSx™'), then x 'ax is in Cg(S). Conversely if a is equal to xbx~' with
b € Cg(S), then it is in Cp (xSx~ ') as well. O

Remark 3.4.7. For any finite dimensional F-module B, we have isomorphism Endf B = Matgim, g F
as F-algebras. Hence Endr B is a finite-dimensional central simple algebra over F.

Lemma 3.4.8. Let S C A be a simple F-subalgebra, then A ®f Rs is a simple ring.

Proof. By lemma 3.4.4, we have A ® Rs = A ® S°PP as F-algebras. The claim follows from theo-
rem 1.1.10. O

Lemma 3.4.9. Let S C A be a simple F-subalgebra, then there exists an x € (A @ Endg S)”™
such that Ca(S) ®f Endf S is isomorphic to x (A ®f Rs)x~ ! as F-algebras.

Proof. By lemma 1.1.9 and theorem 1.1.10, A ®f Ca(S) is a central simple F-algebra. Let
f:S — A®¢Endf S be an F-algebra homomorphism defined by s — s®1ls and g: S — A®rEndr S
be an F-algebra homomorphism defined by 14 ® (s -e). Then by theorem 3.3.4, we that there
exists some x € (A ®r Endf S)™ such that f = xgx~'. Then we have S ®f Endf S is equal to
x (A ®F Ls)x~': indeed the left hand side is im f while the right handside is x (im g) x~'. There-
fore CAgrEnds s (S ®F Endr S) = CAgrEndr s (x (A ®F Rs)xq). By lemma 3.4.6, the right hand
side is equal to XCAg;End; s (A ®@F L£s)x~ ! which is x (A ®F Cgnd; s (£s)) x| by lemma 3.1.4
which is x (A ®F Rs)x~ ! by lemma 3.4.5. O

Lemma 3.4.10. Let S C A be a simple F-subalgebra, then Ca (S) is simple as well.

Proof. By lemma 3.4.9, CaA(S) ®r Endf S is isomorphic to x (A ®f Rs)x ' as F-algebras. Then
C(S) ®F Endg S is simple since A @ Rs is simple by lemma 3.4.8. By theorem 1.1.12, CA(S) is
simple. O

Lemma 3.4.11. Let S C A be a simple F-subalgebra. Then
dimp CA (S) - dimf S = dimF A.

Proof. By lemma 3.4.9, CA(S) @ Endf S is isomorphic to x (A @F Rs)x~ ! as F-algebras. Hence
dimr (CA(S) ®f Endr S) = dimf (A ®f Rs) where the left hand side is dimg CA(S) - dimf Endf S
and the right hand side is dimf A - dimf Rs. Since dimr Endf S = dimf S? and dimf Rs = dim S
(by lemma 3.4.4), we proved this lemma. O

Corollary 3.4.12. Let S C A be a central simple F-subalgebra,
A =B ®fr Ca(B).

Proof. By lemma 3.4.10, CA(B) is simple and by theorem 1.1.10, B @ Ca (B) is simple. Hence
the map B ®f Ca(B) — A induced by B < A and Ca(B) < A is injective. By corollary 1.1.8,
we only need to show dimg B ®¢ Ca(B) = dimg A which is precisely lemma 3.4.11. O

Theorem 3.4.13 (Double Centralizer). Let S C A be a simple F-subalgebra, we have
Ca (CaA(S)) =S.

Proof. It is straightforward that S < Ca (Ca(S)). By lemma 3.4.10, CA(S) is simple, hence
dimp Ca (Ca(S))-dimp CA(S) = dimp A = dimg Ca (S)-dimr S (by applying lemma 3.4.11 twice),
i.e. dimp Ca (Ca(S)) = dimgS. This equality of dimension gives us the desired result. O
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Chapter 4

Brauer Group

4.1 Construction of Brauer Group

Let K be a field. We denote the class of finite dimensional central simple K-algebras as CSA.
When K is clear, we drop the subscript.

Remark 4.1.1. By lemma 1.1.9 and theorem 1.1.10, C3A is closed under tensor product, that is if
A,B € (GA, we have A ®g B € (A as well.

Definition 4.1.1 (Brauer Equivalence). For any two A,B € (SA, we say A and B are Brauer
equivalent, when there exists m,n € N3¢ such that Mat;, (A) = Mat, B as K-algebras. We
denote this relation as A ~py, B, when K is clear, we drop the subscript.

Remark 4.1.2. Isomorphic K-algebras are Brauer equivalent.

Lemma 4.1.3. ~g; is reflexive.

Proof. Indeed, A = Matq(A) as K-algerbas. O
Lemma 4.1.4. ~p; is symmetric.

Proof. Indeed, just exchange m and n. O
Lemma 4.1.5. ~p, is transitive.

Proof. Let A ~p, B and B ~p, C; that is for some m,n,p, q € N>, we have Maty, (A) = Mat, (B)
and Mat, (B) = Mat(C) as K-algebras. Hence, from construction 3.1.3, we have the following:

Matnp(A) = Mat,, (Mat,, (A)) = Mat, (Mat, (B))
= Matmp(B) = Mat,, (Maty, (B))
= Mat,, (Matg(C)) = Maty,q(C).

In another word, A ~p, C. O
Hence ~p, is really an equivalence relation, we denote the quotient */__ as Br(K).

Lemma 4.1.6. (e ®k @) : (GA x (BA — (A descends to a function on Br(K).
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Proof. We need to prove that for all A,B,C,D € (A such that A ~g; B and C ~g; D, A ®g
C ~g: B®g D as well. Suppose Mat,(A) = Mat,(B) as K-algebras and Mat, (C) = Mat4(D),
by construction 3.1.4, we have

Matmp (A ®@r C) = Matm, (A) @r Mat,, (C)
= Matn (B) ®g Matq(D)
= Matnq (B®r D).

O

Construction 4.1.2 (Brauer Group). Br(K) forms a group under [A]_, - [B].,, = [A®k B].,, with
neutral element [K].,, where A, B € CA and [A]Z] =[A°P]_, . We need to prove the following
properties:

1. associativity: for all A, B, C € GA, [A] . ([Blg, - [Cl-5,) = ([Al<g, - [Bl-g,)-[Cl.s, because
A ®g (B®gr C) = (A ®r B) ®g C as K-algebras.

2. neutral element: for all A € A, K], - [Al.;, = [Al;, = [Al.,, - [Kl-,. Since [K]g, -
[Al.;, = [K®k Al.,,, in construction 3.1.4, we see that Mat,(A) = A ®k Maty (K),
by lemma 4.1.6, A ®k Mat, (K) is Brauer equivalent to A ®x K since K ~g, Mat,, (K).

3. cancellation: for all A € (SA, we need [A]_,, - [A°PP]__ | that is we want A ®g A°PP ~p, K.
By construction 3.1.1, we have A ®x A°PP = Endg A which is isomorphic to Matgim, A (K)
as K-algebras.

Theorem 4.1.7. If K is algebraically closed, Br(K) is trivial; in particular Br;,, (C) is trivial.

Proof. We need to show that every A € (A is isomorphic to Mat,, (K) for some K when K is
algebraically closed. Indeed, by theorem 3.2.6, A = Mat,, (D) for some division algebra D and
n € N3o. Since K is algebraically closed and D is an integral domain and finite dimensional, the
structure morphism p : K — D is a isomorphism; therefore A = Mat,, (K). O

Lemma 4.1.8. Let A, B € (SAk. There exists a division K-algebra D and non-zero m,n € N such
that A = Mat,,,(D) and B = Mat, (D) as K-algebras.

Proof. By theorem 3.2.6, we can find division algebras Sa,Sg and non-zero m,n € N such that
A = Maty, (Sa) and B = Mat,, (Sg) as K-algebras. Hence B ~g, A ~g, Mat, (SaA) ~B: Sa,
in another word, for some non-zero a,a’ € N, we have Matq(B) = Maty (Sa) as K-algebras.
Hence, by theorem 3.2.7, we have that So = S as K-algebras and the lemma is proved. O

4.2 Base Change

In this section let E/K be a field extension. We have seen in corollary 1.1.11 that if A € CGAg
then E @k A € (SAg; therefore we have a set-theoretic function CGAx — CSAg. In this section we
prove that this descends to a group homomorphism Br(K) — Br(E). For brevity, if A € (A,
we denote E ®k A as Ag when this causes no confusion.
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Construction 4.2.1. We will construct a series of isomorphisms (either over K or E) to arrive
at the conclusion that A ~p,, B implies Ag ~p;; Be. Assume m,n € N3, are such that
Mat, (A) = Mat,, (B) are K-algebras. Then we do the following calculation: as E-algebras

Mat (Ag) = Ag ® Mat (E) see construction 3.1.4
= Ag Q¢ (E ®k Mat, (K)) see t

= E ®k (A ®k Mat, (K)) see I

= E @k Matm(A) see construction 3.1.4 and 11

Mat, (Bg) = E ®k Mat,(B) same as the case of A
Matq, (Ag) = Mat,, (Bg) see Tt

t: Wee need to check Mat,, (E) = E®yk Mat,, K as E-algebras since construction 3.1.4 only gives a
K-algebra isomorphism. If e € E, then its image in EQgMat (K) is e®1 and its image in Mat, (E)
is diag(e) which under the K-algebra isomorphism is mapped to Zij diag(e)ij - 045y = e ® 1.

1: This is defined by combining two E-algebra homomorphisms

Ag — AE ®k Matm(K) — E ®x (A Rk Matm(K))

and
E ®x Mat, (K) = (E ®k Mat, (K)) @k A = E ®x (A ®k Mat,,, (K)).

Since (E ®x A) Q¢ (E @k Mat(K)) is a simple ring, this morphism is automatically injective.
It is surjective as well: let x € E @k (A ®k Mat(K)), without loss of generality, assume x =
e ® (a® ) for some e € E, a € A. Then precisely (e ® a) ® (1 ® 8i;) is mapped to x.
it: a K-algebra isomorphism A = B gives an E-algebra isomorphism E ®x A = E ®x B.

Thus we have a well defined function Br(K) — Br(E). We now check that this is a group
homomorphism. [K]NBrK is mapped to [E®k KLBTE but EQg K = E as E-algebra. For A, B € (A,
we have that [A]?)LmK is mapped to (A ®k B)g = Ag ®g B as E-algebras; hence [AB]NBrK and

A] . [B]NBrK have the same image under base change.

~Brg
Denote the base change morphism in construction 4.2.1 as Br.
Lemma 4.2.1. BrE is identity.
Proof. If A € CA, then A ~g, K®k A. O
Lemma 4.2.2. Consider the tower of field extension E/F/K,

Brf = Brf oBrf .
Proof. If A € (GAg, then E ®f (F ®x A) is isomorphic to E ®¢ A as E-algebras. O
Corollary 4.2.3. Br forms a functor from category of field to category of abelian groups.

Proof. This is the categorical version of lemma 4.2.1 and lemma 4.2.2. O

Definition 4.2.2 (Relative Brauer Group). Let E/K be a field extension, we define the relative
Brauer group Br(E/K) to be the kernel of the base change morphism Br&.
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Remark 4.2.4. Unpacking the definition of the relative Brauer group, we see that for any A €
Ay, if E @k A = Mat, (E) as E-algebras, then Brf ([A]l., ) = 1.

~Br

Definition 4.2.3 (Splitting Field). For any field extension E/K and any K-algebra A, we say E is
a splitting field of A if and only if E ®x A = Mat,(E) as E-algebras for some non-zero n. We
also say E splits A or A is splited by E

Theorem 4.2.5. Let E/K be a field extension and A € GAg, E splits A if and only if [A]
Br(E/X).

€

~Br

Proof. The “only if” part is by definition. For the other direction, we know by definition that
Mat, (EQK A) = Mat, (E) as E-algebras for some non-zero m,n. By theorem 3.2.6, we find some
division algebra D and non-zero natural number p such that E ®x A = Mat, (D) as E-algebras.
Thus Maty,m (E) = Mat,n (E ®k A) = Maty2,, (D) as E-algebras. By theorem 3.2.7, we conclude
that E = D as E-algebras. Hence E @k A = Mat,(E), in another word, E splits A. O

Remark 4.2.6. In light of lemma 4.2.2, if K is algebraic closed then K splits any K-algebra A.
Indeed, K splits A if and only if [A]. g, but [A].g, is equal to 1.

Remark 4.2.7. If two (SAk are Brauer equivalent, in another word, A ~p;, B, then E splits A if
and only if E splits B. Indeed, if A and B are equivalent, then [A].g, € Br(E/K) if and only if
[B].B: € Br(E/K).

4.3 Good Representative Lemma,

In this section, let K/F be a finite dimensional field extension.
Lemma 4.3.1. Let A € CAr splitted by K. There exists a B € (CSAf such that

o (Al Bl =1

~Br
e there exists F-algebra map K <— B
L (dim]: K)z = dim]: B.

Proof. Since K splits A, we find a non-zero natural number n such that K ® A = Mat, K =
Endg (K™) as K-algebras. We define an F-algebra map t: A — Endg (K™) by

A —— K®r A —— Endg (K™) — " Endy (KM) |
where | is restriction of scalars. Since A is simple, t is injective, therefore A = ((A) as F-algebras.
Define B as Cgpa, (kn)(L(A)), the centralizer of the range of ¢ in Endr (K™). We construct an
embedding K < B by r— (1 - e)

B is a central F-algebra: if x € Z(B), then x € t(A) because by theorem 3.4.13, it is sufficient to
prove that x is in Cgpq, (kn) (B) which follows from the fact that x € Z(B). In fact, x € Z(((A)):
suppose a € A, we need to check x - t(a) = t(a) - x, this is the case because B is defined as the
centralizer of ((A). Since ((A) = A as F-algebras, t(A) is F-central, hence x € F.

B is a simple ring: by lemma 3.4.10, it is sufficient to prove that ((A) is a simple ring which
comes from A = (A) as F-algebras.
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By corollary 3.4.12, we have F-algebra isomorphism Endg (K™) = 1(A) ®¢ B = A ®f B. Since
Endf (K™) = Mat gy, (kn) (F) as F-algebras, we see that [A]., and [B].,, are inverses.

By lemma 3.4.11, dimg B - dimg t(A) = dimg B - dimg A = dimg Endf (K™) = (dimF (K“))2 =
(dimg K - dimg (K“))2 =n? . (dimf K)z. On the other hand, since K @ A = Mat,, K, we have
dimr K @ A = dimgK - dimp A = dimr Maty, K = dimf K dimg Maty, K = n? dimg K. Since
dimg K # 0, we conclude dimf A = n?. Since n # 0 and dimg(B) - dimg(A) = n? dimp(B) =
n?(dimg K)Z, we get the desired result.

O

Corollary 4.3.2. Let A € CAf splitted by K. There exists a B € CGAr such that

o Bl =IA]

~Br ~Br

o there exists an F-algebra map K — B
o (dimg K)? = dimg B.

Proof. Let B and t : K < B be as in lemma 4.3.1. Consider B°PP and K — B — B°PP. This
works. O

Theorem 4.3.3. Let A € (GAr. K splits A if and only if there exists a B € (SAf such that

o [Bl.,, =[A]

~Br ~Br

e there exists an F-algebra map K — B
o (dimf K)? = dimg B.

Proof. The “if” direction is corollary 4.3.2. For the “only if” direction, let B € CSAf and1: K — B
be given. We give B a K-module structure by right multiplication, that is for any a € K and
b € B, we define a-b :=b-(a). Since B is a finite dimensional F-vector space and K/F is a finite
dimensional field extension, B is a finite dimensional K-vector space as well. Since [B].,. = [A],,,
it is sufficient to show that K splits B. We define an F-bilinear map n : K — B — Endg B by
(c,a) — (c-a-e) which induce an F-linear map 1’ : K®g B — Endg B. Since for any 7, ¢ € K and
a € B, we have W/ (r-c®a) (a’) = aa’t(re) = aa’t(c)i(r) =7 u'(c ® a), that is p’ is K-linear
as well. Note that

and that
plc®a-c'®a’)(a") =p'(cc’ ® aa’)(a")

=cc'-aa’-a”
=aa’a”i(cc’)
=a(a’a”uc))i(c) ,
=/ (c®a)(a’a”tc"))
=w'(c®a)(W(c'®a’)(a"))
= (W (c®a)op'(c'®a’))(a”)

that is, u’ is an K-algebra map.

If we can show that p’ is a bijection, we will prove the result for K @ B = Endg B
Matgim, B K as K-algebras. By corollary 1.1.8, it is sufficient to show dimx K®rB = dimyx Endk B.

~
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Let n denote dimg K. Since, dimr Kdimg K ®f B = dimr K ®¢ B = dimg Kdimg B. we have
dimg K®rB = dimr B = (dimy K)?. On the other hand, since (dimf K)* = dimy B = dimr K dimg B,
we have dimx B = dimfK; thus dimg Endg B = (dimg B)z = (dimf K)2 and the result is
proved. O

In light of theorem 4.3.3, we isolate the following useful definition:

Definition 4.3.1 (Good Representation). For any X € Br(F), a K-good representation of X is an
A € CGAf and an F-algebra map K < A such that [A]., = X and dimg A = (dimf K)z. We often
denote the F-algebra map K< A as tor ta.

~Br

When K is clear from context, we will simply say good representation instead of K-good
representation

Corollary 4.3.4. For any X € Br(F), X € Br(K/F) if and only if X admits a good representation.

Proof. Rephrase of theorem 4.3.3 and theorem 4.2.5. O

4.3.1 Basic Properties

We observe the following easy result about good representations. Let X € Br(F) and A be a good
representation of X.

Lemma 4.3.5. The range ta(A) is a simple ring.
Proof. Because K is a simple ring, 14 is injective therefore 1 (A) = K. O
Lemma 4.3.6. Ca (LA(A)) = LA(A).

Proof. In the language of section 1.2, 14 (A) is a subfield of A, hence by lemma 1.2.3, we only
need to show dimr A = (dimy ta (A))?. But dimr A = (dimr K)? and 1(A) = K. O

Construction 4.3.2. We give A a K-module structure by left multiplication, that is for any ¢ € K
and a € A, we define ¢ - a to be ta(c)a. Note that if ¢ € F then 15 (c)a = ¢ - a, in another word,
the K-action and the F-action on A are compatible. Then A is a finite dimensional K-vector
space and dimg A = dimp K: indeed dimp K - dimg A = dim¢ K - dimg K = dimp A.

Lemma 4.3.7. If A and B are two good representations of X, then A = B as F-algebras.

Proof. By lemma 4.1.8, we find a division F-algebra D and non-zero natural numbers m, n such
that A = Mat,,(D) and B = Mat, (D) as F-algebras. Therefore

(dimr K)? = dimr A = m?dim D

= dim]: B = le dim]: D.

Therefore m = n and A = Mat,, D = Mat,, D = B. O
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4.3.2 Conjugation Factors and Conjugation Sequences
In this section, let K/F be a field extension, X € Br(F) and A be a K-good representation of X.

Remark 4.3.8. Since Gal(K/F) acts on K*, for x € K* we feel free to write o -x when it feels more
readable than o(x), for example when there are nested brackets.

Definition 4.3.3 (Conjugation Factor). With respect to A, a conjugation factor of ¢ is a unit
Xs € A* such that for all ¢ € K,

1

Xola(C)xg' =ta(0o-c).

A conjugation sequence is a sequence x : Gal(K/F) — A* such that for all o € Gal(K/F),
Xs IS a conjugation factor of 0. When we want to stress A, we say A-conjugation factor and
A-conjugation sequence.

Remark 4.3.9. When x. is a conjugation factor of o, the equalities xsta(c) = Xgta(0(c)) and

ta(c)xg! =x5'ta(o(c)) are also useful.

Construction 4.3.4. A has a conjugation sequence: let 0 € Gal(K/F), we have two F-algebra
homomorphisms K — A given by ta and ta o 0. Applying theorem 3.3.4 to tao and ta o o gives
us the desired conjugation factor.

Construction 4.3.5. If x is a conjugation factor of o and y of T, then xy is a conjugation factor
of ot. For any ¢ € K

—1 1

talo-t(e)) = xtalt-c)x ' =xytale)y ' x " = (xy) talxy) '

Theorem 4.3.10. If x is an A-conjugation sequence, then {xy|0 € Gal(K/F)} is an K-linearly
independent set. When K/F is finite dimensional and Galois, {xs|0 € Gal(K/F)} is a K-basis for
A.

Proof. Suppose {xs} is linearly dependent. Let ] C Gal(K/F) be such that {xs|c € J} is a
maximally linearly independent subset. Then ] # Gal(K/F), let 0 € Gal(K/F) be an arbitrary
automorphism that is not in J. Since {x|t € J}is maximally linearly independent, x, € (x|t € J).
Hence, by construction 4.3.2 we have

Xo = Z At X = Z ta (Ac) X,
Te]’ Te]’

for some non-zero A € K and J' C J. For each ¢ € K, we have the following equality

ta (0-¢)xg = xgta(c) by definition 4.3.3
= Z }\T 'XTLA(C)
Te]’
= Z Ar-ta (T-¢c)xc Dby definition 4.3.3 again
Te]’
= ta (Aetle)) xa;
Te]’
A (0-¢)xe = ) ta (M) xrtalc)
Te]’
= Y talo(cAd) xe
Te]’
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Since {x.|t € J'} is linearly independent, we have that for each T € J’, Art(c) = o(c)Ar = Ac0(c).
Note that ]’ is not empty, for otherwise xo = ) .y Ar X = 0 but X is invertible. Since for any
T € ]/, A¢ is not zero, we have that for all ¢ € K, o(c) = t(c), i.e. 0 =71. Hence o isin J' CJ
after all; contradiction.

If K/F is finite dimensional and Galois, then dimg K is equal to the cardinality of Gal(K/F),
then by the linear independence of {xs|o € Gal(K/F)}, we conclude that it is indeed a K-basis for
A. O

4.4 The Second Galois Cohomology

In this section, we construct a group isomorphism between Br(K/F) = H? (Gal(K/F), K*) where
K/F is a finite dimensional Galois extension. To keep alignment of the Brauer group, let us use
the multiplicative notation for group cohomology. Recall:

Definition 4.4.1 (the Second Group Cohomology). Let G be a group and M an abelian group
(written multiplicatively) with a G-action.
A function f: G x G — M is a 2-cocycle if for all g, h,j € G,

We denote the subgroup of 2-cocycles as 22(G, M).
A function f: G x G — M is a 2-coboundary if there exists an x : G — M such that for all
g,heG

x(g) = f(g, h).

We denote the subgroup of 2-coboundaries as B?(G, M).

The second group cohomology H? (G, M) is defined to be the quotient group of 2-cocycles
modulo 2-coboundaries ZZ(G’M)/Bz(G’M). If s,t € Z?(G,M), we say s and t are cohomologous
if their equivalence class [s], [t] € H?>(G, M) are the same; in another word st~' € B2(G, M).

Lemma 4.4.1. If f € B%(G, M) is a 2-cocycle and x € G, we have

f(],X) :f(])])
fx,1) =x-1(1,1).
Proof. Indeed:

and

O

In the following sections of this chapter, we assume that X € Br(F) and A is a good represen-
tation of X. We use p, 0,T to denote elements of Gal(K/F). To improve typographic aesthetics
of our proofs, we sometimes use subscript to mean function application.
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4.4.1 From Br(K/F) to H? (Gal(K/F), K*)

Lemma 4.4.2 (Twisting Conjugation Factors). If x and y are two conjugation factors of o, then
there exists a unique ¢ € K such that x =yta(c).

Proof. The uniqueness is clear: suppose x = yta(c) = yta(c’), then ¢ = ¢’ because x,y are
units and 14 is injective. We first observe that y~'x € Ca(t(A)): for any z € K, y~'xta(z) =
y "alo(z))x = ta(z)y~'x (by remark 4.3.9). By lemma 4.3.6, y~'x € 1(A), that is for some
z € K, we have that y~'x = 1A (z) and the claim is proved. O

We denote such ¢ by twist?(x,y) or twist{ ,,

superscript. With this notation, x = yta (twisty ).

when o is clear from context, we often omit the

Remark 4.4.3. twist(x,x) is equal to 1 by uniqueness.
Remark 4.4.4. In fact, twist(x,y) is in K* and twist(x,y)~" = twist(y, x).
Lemma 4.4.5. If x and y are conjugation factors for o, x = 1a (o(twisty y))y.
Proof.
X = XlA (twistx,y)qutA(twisty,x)
=LA (0 - twisty,y) Xta (twisty x)
=t (0 twistyy)y

O

Construction 4.4.2 (Comparing Conjugation Factors). Let x be a conjugation factor for o, y for
T and z for oT. Since xy is a also a conjugation factor, we define the comparison coefficient to be
compyy , = 0 (T (twistxy,2)). We often omit superscript when the context is clear. Note that
comp, , , is a unit in K with inverse o (T (twistz xy)). By lemma 4.4.2 and lemma 4.4.5, we have
the following useful equalities

Xy = ta (compy \ )z
ta (compy} ) xy =z
ta (comp, , ) =xyz~

LA (comp;L‘z) =zy X!

1

Lemma 4.4.6. Let x : Gal(K/F) — A* be a conjugation sequence. We have
COMPy | xoyxpo COMPx, o xeyXpor — P (CompxmxT,ng) COMPy | X oryXpor *
Proof. It is sufficient to make the following calculations:
Xp XoXt = LA (compxp,xg,xpg) (A (Compxpc,x-,,xp(”) Xpot (4.1)
Xp (XoXc) = ta (p-comp,, (. x..) A (compxp’xﬂ’xpm) Xpot (4.2)

Then since x4+ is invertible and 14 is injective, we proved the desired result.
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Equation (4.1) is because: by the first equality in construction 4.4.2 (twice)

XpXoXt = LA (Compxp,xmx‘m> XpoXt = LA (Compxp,xmxpﬁ) LA (Compxpmxhxptﬂ> Xpot-
Equation (4.2) is because: by definition 4.3.3, we have

LA (p ' Compxg,xT,ng) Xp = Xpla (Compxg,x.ﬂxrﬂ—) )
therefore by construction 4.2.1
Xp (XoXt) = Xpla (compxmxmxm) Xot
=ta (p-comp,_ . x..)XpXor
=t (p-comp,, . \..)ta (compxp)xm’xpm) Xpot
O

Construction 4.4.3 (from good representation to 2-cocycle). Let x be an A-conjugation sequence.
We associate with x a function B?(x) : Gal(K/F) x Gal(K/F) — K* defined by

(G) T) H COmeO-,XT,XGT *
We will write B2(x) as Bf\w 3%(7@ or B2 as well.

Lemma 4.4.7. For any A-conjugation sequence x, B2 € B? (Gal(K/F),K*), that is B, is indeed
a 2-cocycle.

Proof. We need to prove
Bx(po,T) Bx(p, 0) = p (Bx(0, 7)) Bx(p, 07).
But this is exactly lemma 4.4.6. O

For any good representation A of X € Br(K/F) and any A-conjugation sequence x, we
have constructed a 2-cocycle Bf\(x). But to obtain a well-defined function from Br(K/F) to
H? (Gal(K/F),K*), we need to verify that for any other good representation B of X and B-
conjugation sequence y, Bf\(x) and 13123 (y) are cohomologous. Let us fix another good represen-
tation B of X € Br(K/F) and a B-conjugation sequence y.

Construction 4.4.4. By lemma 4.3.7, A and B are isomorphic as F-algebras, we use ea g to denote
an arbitrary F-algebra isomorphism between A and B. When there is no confusion, we write e
instead of e g Since eota and tg are two F-algebra homomorphism from K to B, by theorem 3.3.4,
there exists some u € B* such that for all v € K, we have (1) = ue (1o (1)) u™’

u lig(r)u = e (ta(r))). When there is confusion, we write ua g instead of w.

(or equivalently,

Lemma 4.4.8. For any ¢ € K, 0 € Gal(K/F) and A-conjugation factor x of o, we have

1

tg (0 c) =ue(x)u ' g(c)ue (x )u .
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Proof. From definition 4.3.3, we have e (ta(o-c)) =e (XLA(C)X_] ) Substituting it in construc-
tion 4.4.4, we get

(o c) =ue (xtalc)x ')u’
=ue(x)e (talc))e(x ) u’
=ue(x)u "g(c)ue (x ) u .

O

Construction 4.4.5. If x is an A-conjugation factor for o, we can obtain a B-conjugation factor
for o by defining B,x := ue(x)u~" with inverse ue (x ') u~'. We use lemma 4.4.8 to check that
B,x is indeed a conjugation factor for o. If y is a B-conjugation factor for o, another useful
constant is v := o (twisty g,x). We have

Yy=1B (V) B.x
tg (v) =ue(ta (v))u .
vl = o (twistp,x,y)

A,B
X)y
and their conjugation factor x and y.

We also write vy or even v;*;° when we stress the importance of good representation A and B

Lemma 4.4.9. Let x be an A-conjugation sequence and y a B-conjugation sequence. We have

Compyg,ymy ot vxo-'r sYor = meyc o (VXTyyr) ComeU,XT,XUT .

Proof. By construction 4.4.2; we have ysy~ =t (compymyﬁy”) Ygr- By repeated application
of construction 4.4.5 and construction 4.4.4, we have

—1
Yor = UE (LA (‘)chycT)XUT) u

YoYr = we (ta (Vag,yo) Xola (Vxpy. ) Xc) U
= tg (compy,_ . y,.) Yor
=t (compy_ y. yor) We(ta (Vagr yor) Xor) W
=ue(ta (compy, . )) W e (ta (Vagoyor) Xor) W

=ue (ia (compymymy o Vxonyer) Xor) u

—1

—1

—1

Hence

LA (VX(HUU)XO_LA (VX’UUT)XT =lA (CompUU)yT)yUr VXU’HUUT) XoT-

We also have by definition 4.3.3

XolA (Vxpyo) Xe =LA (0 Ve y, ) XoXre

Hence
LA (ng,yg ) XolA (VxT,yT ) Xt = LA (ng,yg o (VXT,yT )) XoXx
=lA (ch,yg(f (Vxe,ye) Compxg,xmxm) Xot
=ta (COmMPy .y Vioryer) Xot-
Cancelling x4 and by injectivity of 14, the result is proved. O
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Lemma 4.4.10. Let x be an A-conjugation sequence and y a B-conjugation sequence. We have
3123»9 (G’ T)VXGTwU ot meyg o (VXT,yT) 'BzA,y (63 T)'
Proof. If we unfold construction 4.4.3, we discover the lemma is saying exactly lemma 4.4.9. O

We finally arrive at our main conclusion for this section.

Corollary 4.4.11. Let x be an A-conjugation sequence and y a B-conjugation sequence. B%’X
and B%’y are 2-cohomologous.

Proof. By definition 4.4.1, we need to find a function f : Gal(K/F) — K* such that for all
o,T € Gal(K/F),

f B}
o (T))f(g) _ ]23»9.
f(oT) BA)X
Let f(p) := vx, y,, by lemma 4.4.10 we see the equality holds. O

Construction 4.4.6 (from Br(K/F) to H? (Gal(K/F),K*)). Let X € Br(K/F), by corollary 4.3.4, X
admits a good representation A; by construction 4.3.4, A admits a conjugation sequence x. We
associate with X an element H?(X) := [Bf\)x]in H? (Gal(K/F),K*). By corollary 4.4.11, for any

other good representation B and B-conjugation sequence y, we have [3%\“} = {3}23’1;}, hence we
have a well-defined function H? : Br(K/F) — H? (Gal(K/F), K*).

4.4.2 Cross Product as a Central Simple Algebra

Let a € B?(Gal(K/F),K*) be any 2-cocycle. In this section, we construct the cross product
associated with a which we prove to be F-central simple. Finally, we show that if a,b €
B2 (Gal(K/F),K*) are cohomologous, the cross products associated with a and b are Brauer
equivalent.

Construction 4.4.7 (Cross product). Denote €, to be Gal(K/F) — K, i.e. functions from Gal(K/F)
to K. Notationally, elements of €, are sequences in K indexed by Gal(K/F); we denote Af . to
be the sequence with value ¢ at o-th index and zero elsewhere. When a is clear from context,
we will omit the superscript. We give €, the usual zero, addition, negation, that is, we give &€,
the normal additive abelian group structure. Since for each ¢ € &€,

c= Z AO‘,C[O’))

ccGal(K/F)

it is often, if not always, sufficient to consider the special cases of Ay . and extend the result lin-
early. For multiplications, we define the result of multiplying Ag ¢, Ar a €4 to be Agr co(d) a(o,T)-
Immediately, if either ¢ or d is 0, the result of multiplication is also zero. That is, for all ¢ € &,
we have c-0=0-¢c=0. Forany r € F and Ay . € €, we define v+ As ¢ to be Ag r.c.

Remark 4.4.12. When K/F is infinite dimensional, the correct definition of €, is perhaps oeGal(k/F) K-
But in Lean4, function type is easier to manipulate than direct sums. Since our scope is finite
dimensional Galois extension, our definition is still accurate.

Lemma 4.4.13. The cross product €, is a ring with the multiplicative unit Aiy q(d,iay—1- The
F-action on &, defined by 1- Ay ¢ := Ay r.c makes it an F-algebra.
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Proof. We verify the axioms of rings on elements of the form Ag .. Let o,7,p € Gal(K/F) and
a,b,c e K.

« associativity of multiplication. We need to check that Ag o (ArpAp,c) = (Ag,aAr,b) Ap et

AD‘,(I (AT,bAp,c) = AU,QATp,bT(c)a(U,T)
= Agrp,ac(b)o(t(e))alalo,T))}
(AU,QAT,b) Ap‘c = AUT,aU(b)a(U,T]Ap,C

= Agrp,ac(b)a(o,7)o(t(c))aloT,p)-

Hence it is sufficient to check
o(t(c))o(a(o, 1)) = a(o, T)o(t(c))a(oT, p).
This is the 2-cocycle condition in definition 4.4.1 (modulo commutativity of K).

» multiplicative unit: we need to check Ag qAig a(id,id) = Aid,a(id,id)As,a = As,a. By multiple
applications of lemma 4.4.1

Aid,a(id,id)—1 Ao,a = Ao a(id,id)~" aa(id,o)
= Ag,a(id,id) aa(id,id)
=Aca

As,alAid a(id,id)1 = Ao ac(alid,id) " a(o,id)
= Ag, ac(alidid)) " o(a(id,id))
=Aca

’

o distributivity: We need to check left-distributivity Ag o (Ar,b + Ap,c) = Ag,aAr,b+Ag,aQp ¢
and right distributivity (Acp + Ap,c) Ag,a = Ar,pAs,a +Ap,cAg,a. This is precisely what
“extend linearly” means.

o F-algebra: We need to check for all r € F, (r . Aid,u(id,id)*‘) Ag,c = Ag e (r * Aig a(id,id) ! )
By lemma 4.4.1

(1 Aid,aidyid)—1 ) Doy = Dig,r-alidyid)—1 Aoe
= As, (r-alid,id) 1 )ca(id, o)
= Ao,[r-a(id,id)*1 Jca(id,id)
=Ag e
Agc (T : Aid‘a(id,id]*‘) = Ac,cAid,r-afid,id)
= Aq,co(ralidyid) 1 )a(o,id)
= Ag c(r-olalidyid)—1))alidyid) !
=Ag c(r1)
=Asrec-
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From now on, we feel free to write 1 € &, instead of A qiq,ia)—1- Then the algebra map
F— &isthemapr—r-1.

Construction 4.4.8 (K-embedding). The map t¢, : K = €4 defined by
b = Aig ba(id,id) !

is an F-algebra map. Checking that tg, preserves 1, multiplication and addition uses nothing
but axioms of ring. For any r € F, we need to check i, (r) =7-1. Indeed (¢, (1) = Aig r.a(id,id)
and 11 =71-Ay qia,id) = Did,r-a(id,id)—1- When the context is clear, we also write (4 instead of
le,. We give €, a K-module structure by left-multiplication, that is for any b € K and ¢ € &,
we define b - ¢ := 4(b)c.

We note the following useful equality: for any b € K

b- AU,C = La(b)AG,c = AO‘,bC)

indeed: ta(b)As,c = Aig ba(id,id)1Bo,c = Ao balid)id) 1 calid,o) = Do, ba(id,id) " calid,id) = Ao,be
by lemma 4.4.1. In another word, for any b € F and ¢ € &,, the K-action of b on ¢ and the
F-action of b on c agree.

Lemma 4.4.14. For every o € Gal(K/F), As 1 is invertible.

Proof. It is sufficient to prove that Ay 7 has a left inverse and right inverse. The left inverse of
AGJ is
A

o 1,a(c—",0) " a(id,id)—'"

Indeed, for any a € K, we have
AU*1 ,a AUJ = Aid,aa(d*’ ,o )

hence substitute a = a (o', 0)71 a(id,id) ™", we see the right hand side is Ay q(id,iq)—1 Which is
precisely 1 € €,. The right inverse is

A

o 1,01 (u(c‘(r*‘ )7] a(id,id)—? ) .
Indeed, for any a € K, we have
A(r,] Acf*‘ a — Aid,cf(a)a(cr,cr*1 )y

hence substitude a = o' (a (0‘, 0*1)_1 a(id,id)q), the right hand side is again Ay q(id,id)—
which is precisely 1 € &,. O

Lemma 4.4.15. For any c € K, we have
Acr,l La(c) = La(g : C)AGJ = AG,G»C

and consequently,
Ag 1 ta(c) Ag}1 = 14(0-c).
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Proof. We calculate
AG,1 Lu(C) = AG,] Aid,ca(id‘id)*1

= Ag 5(calid,id)~")a(c,1)
= Aq,o(c)o(alidyid)) 1 o(alid,id))
= Ao‘,o‘(c)'
O
Lemma 4.4.16. We have Ag 1 Ar1 = 4(a(0,T))Agr,1 = a(0,T) - Agr,1 Consequently we have for

any c,d € K,
AO‘,CAT,d = (CO'(d)Cl(O', T)) 'AGT,l .

Proof. The first equality is in construction 4.4.8. For the second equality, by lemma 4.4.15, we

have
AG,CAG,d = (C : AG,] ) (d : AT,] )

= La(c) (AO',1 Lu(d)) AT,]
= LaAG,U-dATJ
=cC- U(d) . AU,IATJ

=c-o(d)-a(o,T) Agr,1.

Lemma 4.4.17. The set {As,1|l0 € Gal(K/F)} forms a K-basis for €.

Proof. Suppose some linear combination )  Ag - Ag,1 is 0 for some Ag’s in K. We have, by the
equality in construction 4.4.8

Z AO‘ : AG,] = Z AU,?\U =0.

ocGal(K/F) o€Gal(K/F)

Thus, for any T € Gal(K/F), we have

Z }\O"AO‘,] (T) :OZAT)
c€Gal(K/F)

which proves linear independence. The fact that {As 1/0 € Gal(K/F)} spans €, is easy to see
because every A¢ o = a- Ay is certainly in the span. O

Corollary 4.4.18. When K/F is a finite dimensional Galois extension, the K-dimension of &, is
dimg K and the F-dimension of €, is (dimf K)z.

Now we see that cross product, like a good representation, is a K-module and F-algebra with a
K-embedding and correct F-dimension. In the next sections, we prove that €4 is in fact a central
simple F-algebra.
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Central Algebra

We will assume K/F is a finite dimensional Galois extension.
Theorem 4.4.19 (Centrality). €, is a central F-algebra.

Proof. Let z € &, that is in the centre. We want to prove that z is in F. We write z as
Y oMo Ag,1. We see that, for any T € Gal(K/F), we have

z= Z Ar—igr A oT,1-
oeGal(K/F)

Therefore for any d € K and T € Gal(K/F), by lemma 4.4.16 and lemma 4.4.15, we have

ZAT,d = Z 7\0 : Ac,1AT,d

oeGal(K/F)

= Y Ae-o(d)-a(0,7) Age,s
oeGal(K/F)

= Y (Aeo(dalo, 1) - Ag,
o€Gal(K/F)

AT,d Z= Z AT,d ()\1*1 ot ” AT*‘ UT,])

oeGal(K/F)

= Z AT,dLa ()\T*‘ O‘T) AT*‘ oT,1
ocGal(K/F)

= Z d- AT,] la U\T*‘ cr,'r) AW oT,1
oceGal(K/F)

= Z d A, Aciorn
oeGal(K/F)

= Z d'T()\T 1GT)'AT,1AT ToT,1
oeGal(K/F)

= Z d-TAr1g7) - a(T,T '0T) - Agryn
o€Gal(K/F)

. -1

= Z (dt(Ar150)a (T, '07)) - Agr,1.
oeGal(K/F)

By lemma 4.4.17, for any 0,1 € Gal(K/F) and d € K, we have that
Aoo(d)a(o,T) = dT (Ar 14.)a (T, T 'oT). (4.3)
In particular, with d = 1, we have
Aoa(0,T) =T (A 147) a(T,T 'oT),
we substitute back into eq. (4.3) and get

Aco(d)a(o,T) = dAsa(o, T).
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With T =id, we have

As0(d)a(o,id) = dAga(o,id),
Hence for all d € K with Ay # 0, we have o(d) = d. We immediately deduce that for all
0 #id, Ag = 0 by contraposition. Thus z = AgAig,1 = Aig Ay = ta (Agalid,id)) = (Aiqalid,id)) - 1
Consequently, to prove z is in F, it is sufficient to prove that Aga(id,id) is in F. Since K/F

is finite dimensional and Galois, we only need to prove that Aga(id,id) is fixed by every T €
Gal(K/F).Indeed, with d =1 and o =id in eq. (4.3), we have

Aiga(id, t) = T (Aig) a(, id)
= Aiga(id, id)
=T (Aig) T (a(id,id))
= T (Aga(id,id)) .

Simple Ring

In this section we assume K/F is a finite dimensional field extension. Let I C €, be a two sided
ideal, we aim to show that either I = {0} or I = €,. In this section, we use 7t to denote the
canonical ring homomorphism €, — %= /1. We restrict 7 to 7y (,,) : im (tq) — %= /1 and denote
the range of 7l () to be TT.

Construction 4.4.9. The quotient ring %= /1 is a TT-module defined by 7t (14(a)) - 7(y) := m(a - y).
We first check that the TT-action is well-defined:

o Independence of a: Let a,b € K be such that 7t (14(a)) = 7 (14(b)), that is, ts(a —b) € L.
Since 1 is a two sided ideal, a-y—b-y =(a—b) -y =,(a—Db)y is also in 1. This proves
n(a-y) =mn(b-y).

e Independence of y: Let yi1,y2 € &€, be such that y; —y € I, then for any a € K,

a-yr—a-yz = y(a) (y; —yz) is in I because I is a two sided ideal. This proves 7 (14(a)) -

mi(y1) = 1t (ta(a)) - m(y2).
Then we check the axioms of module:

e Lety € €,, we check that 1-7t(y) = 7mt(y) and 0-7t(y) = 0. This is because TT 5 1 = 7 (14(1))
and TT 3 0 =7 (14(0)). Let a € K, 7 (1q(a)) - 0 = 0 because 0 € % /1 is equal to 7(0).

e Let a,b € K and x,y € €&,, we check (7t(ts(a)) +7(ta(b))) - (x) = 7 (1q(a)) - m(x) +
7 (ta(b)) - m(x) and 7 (ta(a)) - (7(x) + 7(y)) = 7 (ta(a)) - m(x) + 7 (a(a)) - 7(y). These are
true because 7 preserves addition. Similarly 7t (1q(a)) - 7 (1q(b)) - (x) = 7 (14(ab)) - 7t(x)
because 7 preserves multiplication as well.

Hence %=/ is also a K-module by pulling back the TT-module structure along K — TT given by
a — 7(1q(a)). Note that 7t is a K-linear map between ¢, and %= /; by this construction.

Lemma 4.4.20. If I # €,, the set {7t (As,1) |0 € Gal(K/F)} forms a K-basis for ®a /1.
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Proof. It is easy to see that the set spans ¢ /1 because {Ag,1]0 € Gal(K/F)} spans €, (lemma 4.4.17).
For linear-independence, the idea is the same as in the proof of theorem 4.3.10. We repeat the
argument here.

Suppose that {7t (Asigma,1) [0 € Gal(K/F)} is linearly dependent. Let ] C Gal(K/F) be such
that {mt(Ag,1) |0 € J} is the maximally linearly independent set. Let o be an arbitrary auto-
morphism that is not in J. Therefore, we have 7(Ag,1) € (m(Ar1) |t €]). Hence we have,
by construction 4.4.9 and construction 4.4.8

T((AGJ) = Z At ’T((ATJ) = Z 7 (La ()\T))TC(AT,]) = Z 7 (Lo (Ax) AT,]) = Z 7T (Ac ’AT,1)-

Te]’ Te]’ Te]’ Te]’

for some non-zero A € K and some ]’ C J. Hence, for any ¢ € K, we have

T (tq (0-¢)) T (Ag,1) =0 (Ag,1) T (La(c)) by lemma 4.4.15
= Zﬂ(ta (A)) (A1) T (ta(c))
T€]
= ZT[(La U\T)ATJ Lac)
T€]
_ ZT[(L“ (M) ta(T- C)AT,1) by lemma 4.4.15 again
T€]
= 3 mlte Owe(e))) (A1)
T€]
_ZU\TT(C)) 7T (Ax,1)
T€]
(g (0-¢)) M (Ag1) = ZT[(Lu(G ) 7t (ta (Ar)) 70 (Ax 1)
T€]
= Zn(ta (o(c)A7)) (Ar,1)
T€]
=Y (o(c)Ar) - m(Ar)
T€]

Since, {7 (Ax,1) |t € ]} is linearly independent, for all c € K and T € ], we have that A;t(c) =
o(c)Ar. Note that J' # 0, otherwise, (Ag,1) = 0 implying that A ; € I which by lemma 4.4.14
is invertible but I does not equal to €,. Hence for each T € J’, we have that for all ¢ € K, since
A¢ is not zero, o(c) = t(c), i.e. 0 =T. Therefore, o is in |’ C | after all. O

Corollary 4.4.21. If I # €, the quotient ring %= /1 is isomorphic to €, as K-modules. In particular
7 is a K-linear isomorphism between €, and the quotient ring %= /;.

Proof. Indeed, by lemma 4.4.17, {A 1|0 € Gal(K/F)} is a K-basis for €4; and by lemma 4.4.20,
{rt(Ag,1) |0 € Gal(K/F)} is a K-basis for ¢« /1. The two sets obviously biject. Hence we can define
a K-linear isomorphism by Ag 1 +— 7(Ag 1). This isomorphism is equal to 7 everywhere. O

Corollary 4.4.22 (Simple Ring). €, is a simple ring.

Proof. For any two-sided-ideal I that is not equal to @,, by corollary 4.4.21, 7t : cross, — %o /1
is a K-linear isomorphism, therefore I is equal to 0. O
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Theorem 4.4.23. Let K/F be a finite dimensional and Galois field extension and a be a 2-cocycle
in B? (Gal(K/F),K*), € is a finite dimensional central simple F-algebra.

Proof. Theorem 4.4.19, lemma 4.4.17 and corollary 4.4.22. O

4.4.3 From H? (Gal(K/F),K*) to Br(K/F)

For every 2-cocycle a, we have defined the cross product €, and proved that it is indeed a
finite dimensional central simple F-algebra in theorem 4.4.23; that is we have a function from
B2 (Gal(K/F),K*) to CAf. If we want a function from H? (Gal(K/F), K*) to Br(K/F), we need
to show that if a and b are cohomologous, €, and &€, are Brauer equivalent. We state it as a
theorem:

Theorem 4.4.24. If K/F is a finite dimensional and Galois field extension, the function € :
H? (Gal(K/F), K*) — Br(K/F) defined by

a— (€]

~Br
is well-defined.

Proof. Let a and b be two cohomologous 2-cocycles. By definition 4.4.1, for some ¢ : Gal(K/F) —
K*, for all o, T € Gal(K/F), we have

¢(o) = . (4.4)

Let us denote A to be the K-basis {A] ;lo € Gal(K/F)} for €, and B to be the K-basis {¢(0) -
AgJ |o € Gal(K/F)} for €,. We immediately have a K-linear isomorphism ¢ : €, = €, by mapping
A to B. Since the K-action on €, and €, agrees with the F-action on them (construction 4.4.8), ¢
is also an F-linear isomorphism. We check that ¢(1) =1 and d(xy) = d(x)d(y) for all x,y € €;:

1. preservation of one: with o =t =id in eq. (4.4), we have c(id) = a(id, id)b(id,id) ™", thus

o) =¢ (Aiczi,a(id,id)*‘)
= ¢ (al(id,id) " - AY ;)
= a(id,id) " - c(id) - AY
= a(id,id)~" - ¢(id) - b(id, id) - b(id,id) " - AY
= (a(id,id)~"c(id)b(id,id)) - (b(id,id) " - Aig,1)
= (a(id,id) " a(id,id)) - Aig.p(id,ia) 1

d
d

= Aig,b(idid) 1 -

2. preservation of multiplication: let o,T € Gal(K/F) and a,b € K, we need to prove that
¢ (Ag’aAiyb) =¢ (A5, (A,"r)b). From eq. (4.4), we see that

o(c(T))e(o)b(0,T) = ¢c(0T)a(o, T).
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Hence, by lemma 4.4.16 and lemma 4.4.15, we have

d)( gr,a g,b) =¢ (A?ﬂ,ac(b)a(c,’t))
¢ (ao(b)a(o,T) - AGe 1)
( ) ( ) : ( 0‘T1)

)( ) UT]
= ao(b)o c( ))e(o ) (0,7) - Ageyy

([
o
1)

\
o
o
= S
&

ch ao(b)b(oT)

c(o)o(c(T)) - c,a Tb

d(AG,) b ( i,b)sz(a Ag 1)d>( )

( (b
= (ac(G) . A ) ( C( ) - ArJ)
t

Hence ¢ is actually an F-algebra isomorphism between €, and €, and isomorphic central simple
F-algebras are certainly Brauer equivalent. O

444 H?o0¢€ and €oH?

For a finite dimensional Galois extension of field K/F, we have constructed two functions H?
and € between the second cohomology group H? (Gal(K/F),K*) and the relative Brauer group
Br(K/F). In this section, we prove that they are mutual inverse to one another,

Lemma 4.4.25. The composition of € and H? is the identity:

H2 (Gal(K/F), K*) —— Br(K/F) =5 H2 (Gal(K/F), K*).
-
id
Proof. Let a be any 2-cocycle, by lemma 4.4.15, we notice that x : 0 — Ag 1 is a conjugation
sequence for €,. Hence by construction 4.4.3, 77 and theorem 4.4.24, we evaluate the composition
at a as:

[a] —— [&4]

s T [(G)T) HCOIHng,l)AT,])AGT‘1] ’

That is, we need to show that a and (0, T) — compa_ , A, ,,a,.., are 2-cohomologous. In fact,
they are equal. By construction 4.4.2, we have that (¢, (compAU N 1) = Ag, 14, 1Am 1=
a(o,7T) - Agr, 1A 1 = =a(0,T) - 1 = Ajg,q(s,r) Which is precisely t¢, (a((f T)) O

Lemma 4.4.26. The composition of H? and € is the identity:
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Br(K/F) 5 H2 (Gal(K/F),K*) —% Br(K/F) .
id
Proof. Let X € Br(K/F), A be an arbitrary good representation of X and x be an arbitrary A-

conjugation sequence which exists by corollary 4.3.4 and construction 4.3.4. By definition 4.3.1,
X =[A]__ . Hence by ?? and theorem 4.4.24, we evaluate the composition at X as:

~Br ' [Bi] ’ [6932] :

x

~Br

(A]

Hence we need to prove that A and &g are Brauer equivalent. We will show that they are
isomorphic as F-algebras. since {xs|lo € Gal(K/F)} is a K-basis for A and {As 1|0 € Gal(K/F)}
is a K-basis for €g2, they are certainly isomorphic as K-modules. Let ¢ : €52 = A be the
K-linear isomorphism defined by As 1 — X, since the K-action on A and the F-action on A are
compatible (construction 4.3.2), ¢ is also an F-linear isomorphism. Like in theorem 4.4.24, we
check that ¢(1) =1 and ¢(xy) = d(x)d(y) for all x,y € A:

1. preservation of one: by construction 4.4.2, we have

() =¢ (Aid‘gi(id,id)”)
= B2(id,id) " (Aig,1)
= B(id, id)*‘x

= compy,, Xid

idy Xid s Xid
—1
= COMPyy,xiq,xig XidXidXig
—1
= XidXiq

=1.

2. preservation of multiplication: let o,T € Gal(K/F) and c¢,d € K, by construction 4.4.2
and definition 4.3.3, we have

d) (AO' CAT d (AO'T co(d)B2 (o, T))
co(d)B ( ) . d)(AUT,])
=co(d)B ( T) - Xor

ComeUyXTyXUT ‘Xot
7\ (Compxcyx'r)xcr'r> Xot

* XoXr

=co(d

o

Qq
A A A=A

o
\_,\.,\_,\.,\.,

=co(d

= (¢ xg) (d-xq)

O

Corollary 4.4.27. For a finite dimensional and Galois extension of field K/F, the relative Brauer
group K/F bijects to the second cohomology group H? (Gal(K/F), K*) by the following commu-
tative diagram
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Br(K/F) s H2 (Gal(K/F), K*)

Br(K/F) +—— H? (Gal(K/F), K*)

Proof. Exactly lemma 4.4.25 and lemma 4.4.26. O

4.4.5 Group Homomorphism

In previous sections, when K/F is a finite dimensional Galois extension, we have set up a bijection
between the relative Brauer group Br(K/F) and the second cohomology group H? (Gal(K/F), K*).
But both functions H? and € are only set-theoretical function. In this section, we aim to upgrade
them to group homomorphisms. Technically, we only need to prove either one of them preserves
multiplication; we provide a proof that H? preserves one anyway because we found the proof to
be entertaining.

¢; =1and H*(1) =1

Theorem 4.4.28. The function ¢ : H? (Gal(K/F), K*) — Br(K/F) preserves one, that is ¢

Proof. Since {Aq,1l0 € Gal(K/F)} is a K-basis for €; where 1 € B2 (Gal(K/F),K*) is the constant
function 1 (lemma 4.4.17), we construct a K-linear map ¢ : €; — End¢ K by Ag,1 = 0; note
that ¢ is F-linear as well. In fact, ¢ is also an F-algebra homomorphism:

1. ¢(1) =1: indeed ¢ (Aig,1) = id.

2. d(xy) = d(x)d(y): indeed, let 0,7 € Gal(K/F) and c,d € K, we need to check that
¢ (Ag,cAr,a) = ¢ (Ag,c) & (Ar,a). The left hand side is equal to

d) (AGT,CG(d)) = d) (CO‘(d) : AO‘T,]) = CO‘(d) - 0T,
and the right hand side is equal to
e Do) P (d-Ary) =(c-0)(d-T).

For any x € K, applying left hand side to x will result in co(d)o(t(x)) while right hand
side will result in co(dt(x)), hence both sides are equal.

Hence, ¢ is an F-algebra isomorphism by corollary 1.1.8; that is we have €; = EndpK
Matgim; k (F). We conclude that €; is Brauer equivalent to F and consequently H2(1) =1.

I e

Corollary 4.4.29. The function H? : Br(K/F) — H? (Gal(K/F), K*) preserves one, that is H?(1) =
1.

Proof. Apply € then use lemma 4.4.26 and theorem 4.4.28. O
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Cap ~Br €a ®F €

The argument in this section is more complicated, because, unlike before, the left hand side
and the right hand side are not isomorphic as F-algebras — left hand side has F-dimension
(dimf K) while the right hand side has F-dimension (dimf K)4. Let a and b be two 2-cocycles
in B2 (Gal(K/F),K*), we denote ¢ to be the 2-cocycle ab. Intuitively, ¢, ®F € is too “big”, to
address this issue we introduce a quotient module.

Construction 4.4.10 (M). Consider the quotient module

o Ca®rC
M =" /() @b—a®@(k-b)[keK,aeCq,bEC, ) -

For any a’ € €, and b’ € €, we can define an F-linear map M — M by descending the F-linear
map €, ®F & — €, R &,
a®br aa’ @ bb’;

we need to check that for all k € K,a € €,,b € &€, the image of (k-a)®b —a® (k-b) is
in (k-a)®b—a® (k-b)keK,aeCabe): the image is (k - aa’) ©b — a® (k - bb’)
which is in the generating set with k € K, aa’ € €4, and bb’ € €. This map is in fact F-linear
in both a’ and b’, hence we have an F-bilinear map €, ® €&, — M — M. This gives M a
(€q ®F €4)°PP-module structure given by

(a’®b’)-[a®b] =aa’ ®bb’

for any a,a’ € €, and b,b’ € €,. All of the module axioms in this case follows from F-bilinearity.
For any ¢ € €, we can define another F-linear map M — M by descending the F-linear map
C.RFC, — €T,
a®br Y AL (@ ® AY b
ocGal(K/F)
we need check that for all k € K;a € €,,b € €, the image of (k-a)®b—a® (k-b) is in
(k-a)@b—a®(k-b)lkeK,a € €yb e &): by lemma 4.4.15 the image is

Z Aiyc(ﬁ)(k. Cl) ® AE‘Jb _Ag,c(a)a ® Ag,] (k : b)

oeGal(K/F)

= ) Al owKa® AL b AL o) ® AL (k)b
o€Gal(K/F)

= ) ok)-AY ma® AL DAL ) @ o(k)-Ad D,
oeGal(K/F)

which is in ((k-a)®b—a® (k-b)lk € K,a € €,,b € &) because for each 0 € Gal(K/F), the
summand is in the generating set with o(k) € K, AG (0@ €T and A‘(’”b € €. This map is in
fact F-linear in c, therefore we have an F-bilinear map €, — M — M. (In the above calculation
“®” symbol has low precedence.) This gives M a €.-module structure given by

c-lagbl=| > A} ,a®A}b
o€Gal(K/F)

In particular, if ¢ is of the form k- A ;, then (k- AS ;) -[a®Db] is equal to [(k- A% ;) a® Af ;b]

T,1?
because A7 ; (o) =0 for all 0 # 1. Two of the module axioms need more than F-bilinearity:
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e ¢ =1: note that ¢ = 1 = b(id, id) " "a(id,id) " - Ajy 1, hence
1-[a®b] = [b(id,id) "a(id,id) 'A% ;a® AY ;b]
= [AG afid,ig) 14 ® A:ﬂ,b(id,id)*‘b}
=[la®Dbl.

e CiCy - [a® D] = - ¢y - [a®b]: assume ¢ = kq - A%,y and ¢ = kp - AL, ;. Then
cic2 = ki1 (kz) T]TZ c(t1,72) =kq7171 (k2) Cl(T],Tz)b(T],Tz) At Therefore, the left
hand side is equal to

[kt (k2)a(Tr,T2)b(T1,T2) - A, 1) A ® Ann, b]
= [kiti(k2)a(Ti,72) - AY, o, 1@ @ b(T1,T2)AS -, 1b]
:[ ’CflhklATz kza®A’f1 1A T2, 1b]

T]Tz,]

T1T2,

and the right hand side is also equal to

(k1A% ) [k2 .A:Z 1a® A2 b]

[( ’ TI])( Tz1)a®Ag1,1A’fz, }
|:k1T] kz AT]TZ G(T1 TZ a®A"t;] ]A T2, ]b]
[

b
T1 2 T2,
(ki - A%, 1) (k2- A%, 1) a® AL 4AL, 1b].

Expanding everything out and checking on the basic elements, we see that for any x €
(Ca@F )PP ye € andz € M, x-y-z=1y-x-z Inanother word, we gave M a (&, €4 @F Cp)-
bimodule structure.

Lemma 4.4.30. M is isomorphic to €, ®k €, as F-modules.

Proof. The map M — €, ®k €, is obtained by descending the obvious F-linear map €, ®¢ &€, —
€, ®k €. By universal property of tensor product, there is an additive group homomorphism
€,k € — M given by a ® b — [a ® b], this map is in fact F-linear. The two maps are inverse
to each other. O

Corollary 4.4.31. The F-dimension of M is equal to (dimg K)3, consequently M is a finitely
generated €.-module.

Proof. By lemma 4.4.30, the dimension of M is equal to dimf €, Rk €, = dimg €, Rk €, dimg K.
By lemma 4.4.17, dimg €, = dimg €, = dimr K. O

Construction 4.4.11. By lemma 2.2.2, there exists some simple €.-module S such that € is
isomorphic to ;¢ j S as €.-module for some indexing set J. If we give S the F-module structure
by pulling back the €.-module structure, by restricting scalars €, is isomorphic to @iel S as F-
module as well. Since €, is a finite dimensional F-vector space, ] must be finite as well. Note that
S must be a finite dimensional F-vector space, because S is finitely generated as €.-module and
€. has finite F-dimension. The indexing set ] must be nonempty, otherwise €, being isomorphic
to @, S is a trivial ring; but simple rings are non-trivial. Since ] is finite, direct sum over J and
direct product over | agree. Recall construction 3.1.1 and construction 3.1.2, for all non-zero
m € N, we have
Ende, (S™) = Matyy, (Ende, S)
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as F-algebras, hence
Q:Spp = Endgc C = End¢c Sm = Matm (Endgc S)

as F-algebras. Finally
c = Matm (Endgc (S)OPP)

as F-algebras.

Corollary 4.4.32.
(dimf K)? = [J|? dimf Ende, S.

Proof. They are both equal to dimr €, by construction 4.4.11. O

Corollary 4.4.33.
Jldimy S = (dimr K)?

Proof. They are all equal to dimf ¢, = dimg S by construction 4.4.11. O
Lemma 4.4.34. There exists a € -linear isomorphism between M and S!Idimr K,

Proof. By lemma 2.2.4, we only need to show that dimy M = dimg SU14™F K We already have
dimg M = (dimf K)3 by corollary 4.4.31. We also have dimy SUI4mFK — ]| dim Kdimr S =
dimp K (|J| dimg S) = dimg K (dimg K)2 by corollary 4.4.33. O

Corollary 4.4.35. As F-vector spaces, M = Sl dimr K
Proof. Restricting scalars on the € -linear isomorphism in lemma 4.4.34 O
Corollary 4.4.36. As F-algebras, Ende, M = Mat | gim, x (Ende, S).

Proof. From corollary 4.4.35, we have Ende, M = Ende, (SmdimF K). By construction 3.1.2,
they are isomorphic to Mat | qim, k (Ende, S). O

Corollary 4.4.37.
dimp Ende, M = (dimg K)*.

Proof.
dim}: EIld@c M = dim}: Matm dimf K (]'__‘Dndgr S)

= dimr (End@c S ®F Matj| dim, K(F))
=[J1? (dimf K)? dim Ende, S

= (dimr K)* (IJ1? dimy Ende, S)

= (dimr K)? (dimf K)?,

where the last equality is by corollary 4.4.32. O

Theorem 4.4.38. The cross product €, and the tensor product €, ®f €, are Brauer equivalent.
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Proof. We define an F-algebra homomorphism ¢ : (€, ®F €)°"" — Ende, M by x + (x - ).
By corollary 4.4.37, both sides has F-dimension (dimg K)4, therefore, ¢ is an F-algebra iso-
morphism by corollary 1.1.8. Hence we have another F-algebra isomorphism by composing the
isomorphism in corollary 4.4.36:

PP 1 € @ €, = (Ende, M) = Matj| qim; k ((Ende, S)°).

In the meantime, by construction 4.4.11, we have €. = Matj| ((Ende, S) opp); hence Matgim, k (<)
is isomorphic to €, ®f €. O

Corollary 4.4.39 (group isomorphism). For a finite dimensional Galois field extension K/F, the
relative Brauer group Br(K/F) is isomorphic to the second group cohomology H? (Gal(K/F), K*).

Proof. In corollary 4.4.27, we have seen that H? and ¢ form a bijection, thus it is sufficient to
check either one of them preserves multiplication. The function € : H? (Gal(K/F), K*) preserves
multiplication: let [a], [6] be two elements in H? (Gal(K/F), K*), by theorem 4.4.38, € (ab) is indeed
Brauer equivalent to €(a) ®f €(b) that is

€, (€, = [€arl.

~Br
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